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Artificial intelligence-guided design of lipid 
nanoparticles for pulmonary gene therapy
 

Jacob Witten    1,2,3,8, Idris Raji    1,2,4,8, Rajith S. Manan    1,2,8, Emily Beyer1, 
Sandra Bartlett1,2, Yinghua Tang5, Mehrnoosh Ebadi    5, Junying Lei5, 
Dien Nguyen    1,2, Favour Oladimeji2,3, Allen Yujie Jiang    1,2, 
Elise MacDonald    1,2, Yizong Hu1,2, Haseeb Mughal1,2, Ava Self1,2, 
Evan Collins    2,3, Ziying Yan    5, John F. Engelhardt    5, Robert Langer    1,2,3,6,7 & 
Daniel G. Anderson    1,2,6,7 

Ionizable lipids are a key component of lipid nanoparticles, the leading 
nonviral messenger RNA delivery technology. Here, to advance the 
identification of ionizable lipids beyond current methods, which rely 
on experimental screening and/or rational design, we introduce lipid 
optimization using neural networks, a deep-learning strategy for ionizable 
lipid design. We created a dataset of >9,000 lipid nanoparticle activity 
measurements and used it to train a directed message-passing neural 
network for prediction of nucleic acid delivery with diverse lipid structures. 
Lipid optimization using neural networks predicted RNA delivery in vitro 
and in vivo and extrapolated to structures divergent from the training set. 
We evaluated 1.6 million lipids in silico and identified two structures, FO-32 
and FO-35, with local mRNA delivery to the mouse muscle and nasal mucosa. 
FO-32 matched the state of the art for nebulized mRNA delivery to the 
mouse lung, and both FO-32 and FO-35 efficiently delivered mRNA to ferret 
lungs. Overall, this work shows the utility of deep learning for improving 
nanoparticle delivery.

Lipid nanoparticles (LNPs) for RNA delivery have recently begun to 
demonstrate their potential for improving human health1–3. Messen-
ger RNA vaccines for coronavirus disease 2019 have provided excep-
tional protection against severe disease4,5, and hepatic RNA delivery 
has yielded the US Food and Drug Administration-approved Onpattro 
and other promising clinical programs1,6,7. Despite this, more potent 
and targeted LNPs are required to enable the broadest application of 
RNA therapies for genetic diseases, reduce side effects8, improve shelf 
stability9,10, deliver to extrahepatic tissue such as the lung epithelium11–14 
and improve control over inflammation15. Lung-targeted gene therapy 

is particularly challenging14 but has the potential to treat a range of dis-
eases including cystic fibrosis (CF)14, idiopathic pulmonary fibrosis16–18, 
alpha-1 antitrypsin deficiency19, chronic obstructive pulmonary 
disease20, primary ciliary dyskinesia21, asthma22,23 and more.

So far, ionizable lipids for LNP-based delivery have almost exclu-
sively been designed via experimental screening, rational design24–26 or 
a combination of the two15,27. Screens rely on high-yield combinatorial 
chemistry to generate chemically diverse lipid libraries, while rational 
design leverages features of potent ionizable lipids, such as biodegrad-
able groups and branched tails24,25,27. More recently, an effort to use 
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Design and characterization of the DL model for predicting 
LNP activity
LiON adapts D-MPNNs for the unique context of LNPs based on combi-
natorial chemistry-synthesized ionizable lipids. To make predictions, 
ionizable lipid structure and metadata (formulation, cargo and target 
information) are input into a D-MPNN from the Chemprop package50. 
Chemprop processes the lipid chemical structure with a D-MPNN and 
merges the D-MPNN output with the metadata in dense layers to output 
a single predicted quantity (Fig. 1b).

Following hyperparameter optimization, we trained the model 
using a 70%–15%–15% training–validation–test split and measured 
performance as the correlation coefficient between predicted and 
actual mRNA delivery activity for each individual dataset. We measured 
strong correlations across all datasets (Fig. 1f).

Because the lipids were generated using combinatorial chemistry, 
the datapoints are correlated, which makes the performance appear 
deceptively impressive and encourages overfitting (Supplementary 
Fig. 2a,b). Inspired by the use of scaffold-based splits in small mol-
ecule drug research51, we used a training–validation–test split based 
on amine headgroup (Supplementary Fig. 2c). Hence, performance is 
only measured on lipids with new amine headgroups for a particular 
dataset, reducing training–test correlation and forcing the model to 
extrapolate. Splitting on both amine and tail components would have 
required discarding a large fraction of the data (Supplementary Fig. 2d). 
As expected, performance was worse for the amine-based split, but we 
still observed near-universally significant positive correlations (Fig. 1g).

Application of LiON to branched-ester library
For our first application of LiON, we sought to expand on a large in vivo 
dataset because accurate predictions would be more likely to translate 
to in vivo performance. Recently, our group reported a peptide-encoded 
barcoding approach to screen 384 branched-ester-containing lipids 
for liver mRNA delivery35 (Fig. 2a). This study identified RM-133-3 as 
the top-performing lipid, along with an optimized formulation that 
we used for all of our experimental testing with this library. Our model 
performed well on this dataset (Fig. 1f,g).

We predicted liver mRNA delivery for a potential library of 2,574 
lipids (Supplementary Tables 2 and 3). As shown by the top three 
predicted structures (Supplementary Fig. 3), the model preferred 
docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) tails, 
as expected because the top 21 LNPs from the barcoded screen had 
DHA or EPA tails.

We examined lipids with EPA or DHA tails and the top 11 predicted 
headgroups for liver firefly luciferase (FFL) mRNA delivery, finding 
three candidates with comparable activity to RM-133-3 (Fig. 2b). The 
lipids with greater than three tails aggregated and had poor perfor-
mance. RJ-A03-T16, a close RM-133-3 analog, was a slight improvement 
over RM-133-3 (Fig. 2c). Throughout this screening we generally used 
n = 1 mouse/lipid to maximize throughput while minimizing use of 
mice, with occasional n = 2 to confirm that our tests were reliable.

Next, we reasoned that the large DHA and EPA tails may not be 
optimal for the preferred larger headgroups. We, therefore, tested 
lipids with α-linolenic acid (ALA) and γ-linolenic acid (GLA) tails, ranked 
third and fifth, ranked by the DL model (as measured by average pre-
dicted delivery across all headgroups) (Supplementary Table 4). As 
before, lipids with greater than or equal to four tails aggregated but 
RJ-A14-T30 and RJ-A14-T34 had promising delivery (Fig. 2d). Lipids with 
the fourth ranked arachidonic acid tail were worse than RJ-A14-T34 
(Supplementary Fig. 4). RJ-A14-T34 was substantially more potent than 
DLin-MC3-DMA (MC3, approved for siRNA liver delivery as Onpattro1)  
and comparable with SM-102 (Moderna’s US Food and Drug 
Administration-approved formulation for intramuscular coronavirus 
disease vaccination1), though less potent than lipid 5 (a liver-targeting 
candidate24) (Fig. 2e). Next, we tested the sixth ranked tail, identifying 
RJ-A30-T01, which was significantly more potent than both MC3 and 

machine learning for LNPs has shown utility in designing analogs from 
a library of delivery lipids28.

Here, we introduce lipid optimization using neural networks 
(LiON), a deep learning (DL) approach for lipid discovery and design29–32. 
LiON uses deep message-passing neural networks (D-MPNNs), a sub-
set of DL suitable for chemical structure analysis that has produced 
state-of-the-art performance30 and assisted the identification of novel 
antibiotics29,33,34. We hypothesize that LiON could facilitate the design 
of potent lipids, including some that would not be deemed promising 
by human experts. Notably, in contrast to previous work28 the power 
and flexibility of D-MPNNs allowed LiON to be trained on multiple 
chemically diverse libraries and learn generalizable rules about ioniz-
able lipid design.

First, we used LiON to optimize the results from a previous bar-
coded lipid library screen35, identifying an ionizable lipid RJ-A30-T01 
that was nine times more potent for mRNA delivery than the top can-
didate from the previous screen and matched or exceeded top clinical1 
and preclinical24 benchmarks for liver mRNA delivery.

Second, we used LiON to select ionizable lipid candidates synthe-
sizable using a novel four-component reaction (4CR). Our top lipids, 
FO-32 and FO-35, yielded state-of-the-art mRNA delivery to the muscle, 
lung and nose. Moreover, FO-35 has a highly unique structure with little 
similarity to other published lipids. Taken together, these results show 
that DL can explore new regions of chemical space and yield substantial 
improvements in mRNA delivery potency.

Furthermore, both FO-32 and FO-35 LNPs enable potent transfec-
tion throughout the whole ferret lung epithelium, from trachea to 
alveoli. Ferrets are a widely used airway model due to strong physi-
ological similarities with human airways36–38, and to our knowledge, 
the only reports in literature of successful ferret mRNA delivery have 
been polymeric nanoparticles that target the alveoli but not conduct-
ing airways39. Because the conducting airways are the critical site for 
muco-obstructive lung diseases, such as CF, chronic obstructive pul-
monary disease and primary ciliary dyskinesia40, the widespread fer-
ret lung epithelial targeting of FO-32 and FO-35 indicates substantial 
promise as pulmonary gene therapy agents.

Results
Dataset and DL model design
Our LiON approach has five steps. First, we collected all high-throughput  
LNP activity screens available to us both published and unpublished 
(Fig. 1a), which amounted to 20 unique datasets, including 4 in vivo 
screens with 575 individual datapoints and 16 in vitro with 8,727 indi-
vidual datapoints15,28,41–49 (Supplementary Table 1). Supplementary 
Fig. 1 illustrates the chemical diversity included in the dataset. Sec-
ond, we used the dataset to train and evaluate a DL model for LNP 
potency prediction (Fig. 1b). Third, we used our model to predict 
mRNA delivery for all synthesizable ionizable lipids of a particular 
class (Fig. 1c). Fourth, we formulated and tested the top candidates 
in vivo (Fig. 1d). Lastly, we tested analogs of the top lipids to further 
optimize activity (Fig. 1e).

Because different datasets are incommensurable—one cannot, 
for example, reasonably compare mRNA delivery in HeLa cells15 to 
barcoded liver mRNA delivery35—we report performance dataset by 
dataset below. Generating a standardized dataset in which multiple 
ionizable lipid libraries were screened under identical conditions, 
including cargo, target cell or tissue type and molar ratios and identities 
of helper lipids, would be a useful future endeavor, as would screening 
under multiple formulation conditions to allow the co-optimization 
of ionizable lipid and formulation. Here, we reasoned that despite 
screens having used different conditions and formulation param-
eters, LiON could, nevertheless, learn generalizable rules for ionizable 
lipid design. Because almost every screen varied lipid structure while 
holding formulation constant, we only optimized lipid structure, not 
formulation, with LiON.

http://www.nature.com/naturebiotechnology
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RM-133-3 (Fig. 2f,g). Lastly, as a proof-of-concept protein replacement 
therapy applications, we tested delivery of erythropoietin (Epo) mRNA. 
RJ-A30-T01 performed at least comparably with lipid 5 and was ninefold 
better than RM-133-3 (Fig. 2h). A detailed characterization showed that 
RJ-A30-T01’s expression was predominantly in the liver with minor 
spleen signal, the resulting LNPs could be freeze-thawed with minimal 
change in LNP diameter and the LNPs caused little detectable inflam-
mation or liver damage (Supplementary Fig. 5).

RJ-A14-T34 had both a tail and headgroup that were not in the origi-
nal 384-lipid screen, showing the model’s ability to extrapolate. Also, 

RJ-A30-T01 was in the original screen but was not identified as an assay 
positive, possibly due to nonlinear effects inherent to barcoded screen-
ing35. This shows that LiON can improve the results from barcoded screens.

To test whether the additional datasets included in the DL model 
improved performance over training on the barcoded branched-ester 
liver data alone, we trained a model only on the branched-ester liver 
dataset. This model ranked T01 and T34, the tails used in our two top 
candidates, in the bottom five (Supplementary Table 4). Hence, the 
incorporation of additional training datasets was required to iden-
tify RJ-A30-T01 and RJ-A14-T34. This highlights the importance of 
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Fig. 1 | Workflow for LiON, DL-based LNP design. a, A collection of available LNP 
data, typically collected from a screen generated via combinatorial synthesis. 
b, Schematic of training of LiON, a predictive message-passing neural network 
(MPNN)-based DL model, on training data. The inputs are the chemical structure 
of the ionizable lipid along with metadata (formulation details, cargo and target 
of LNP). c, A ranking of lipids from a novel library using LiON. d, Top candidates 
are screened in vivo. e, Structural optimization of individual promising LNPs. 
f,g, Performance of LiON as measured by correlation between predicted and 
experimental delivery results on held-out test set using a random training–test 

split (f) and an amine-based training–test split (g). Only datasets with n > 10 
in test set are shown. The P values for significance of correlation used a beta 
distribution for null hypothesis of no correlation and were two-sided. ZAL, 
zwitterionic amino lipids43; UnDen, unsaturated dendrimer lipids48; RedAm, 
reductive amination42; 3CR Est, three-component reaction with esters41; 
Akinc, lipids from Akinc et al.47; iPhos, ionizable phospholipids45; 3CR, three-
component reaction15; Wh, Whitehead et al.27; BEst A549, branched ester lipids35 
tested in A549 cells; Den, dendrimer lipids44; BEst liver, branched ester lipids35 
tested in the liver.
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integrating multiple datasets and suggests that the usefulness of LiON 
will increase over time as more data become available and the model 
generalizes even more accurately.

Application of LiON to a novel four-component library
Design of lipids for intramuscular delivery. While the ability to opti-
mize existing screens is useful, it is more challenging (but potentially 
higher reward) to expand into novel, highly diverse chemical spaces. 
We, therefore, developed a four-component Ugi reaction between a 
primary amine, a carboxylic acid, an isocyanide and a ketone (Fig. 3a) 
and used LiON to suggest lipid structures. While related reactions have 

been reported15,41,52, for this library, we had no data. Furthermore, the 
yield of this reaction was generally <10%, so individual purification of 
lipids was required, precluding high-throughput testing. Despite these 
challenges, the 4CR offered substantial chemical diversity, so we used 
LiON to identify potent lipids.

To start, we ranked 86,400 lipids (Supplementary Fig. 6) by pre-
dicted delivery and selected the best-predicted candidates for in vivo 
testing. Because the training data for the closest analogs, the 3CR and 
4CR reactions, were in HeLa cells using 35:16:46.5:2.5 lipid:DOPE:cho
lesterol:PEG-lipid molar ratios (referred to below as the ‘KK’ formula-
tion53), we used these conditions as our metadata, as this produced the 
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most stable predictions. We tested the resulting top predicted LNPs 
for intramuscular delivery, reasoning that a model trained mostly on 
in vitro delivery may predict local delivery better than systemic deliv-
ery. The first two candidates tested, ML3 and ML5, showed nonzero 
delivery potency (Fig. 3b and Supplementary Fig. 7) and also had 

secondary ionizable amines, which is unusual for ionizable lipids. 
Converting ML3 to the tertiary amino analog ML3Me improved mRNA 
delivery (Fig. 3c,d), and carboxylic acid analogs of ML3Me yielded 
further improvement (Supplementary Fig. 8). Moving forward, we 
limited our possible amine headgroups to exclude secondary amines.
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Next, in silico ranked lipids synthesizable from 53 amines, 60 car-
boxylic acids, 11 isocyanides and 51 ketones (Supplementary Table 5). 
Since the top several hundred lipids had essentially identical predic-
tions, we hand-selected a set of chemically diverse lipids from the top 
200 to synthesize and test. We also synthesized analogs of the top 
candidates, particularly n-butyl isocyanide analogs, which improved 
yield and dimethylaminopropylamine headgroups, as those were suc-
cessful in previous Ugi lipids.

The results from the first round of testing are given in Supplemen-
tary Fig. 9, with follow-up testing shown in Fig. 3e. Many LNPs were 
of comparable transfection efficiency to SM-102, though lower than 
cKK-E12. The introduction of a branched carboxylic acid tail generated 
FO-32, which had comparable activity with both SM-102 and cKK-E12 
(Fig. 3f,g and Supplementary Fig. 10). Systematic examination of FO-32 
analogs did not yield further improvement (Supplementary Fig. 11).

Following formulation optimization via design of experiments 
(Supplementary Fig. 12 and Supplementary Tables 6 and 7) to identify 
formulation F3, we modified FO-16 and FO-22 to also contain branched 
carboxylic acid tails, resulting in FO-35 and EB-66 (Fig. 3g). We tested 
FO-32, FO-35 and EB-66 against cKK-E12 (formulated according to 

F3 and KK formulations) and SM-102 across a broad range of doses 
(Fig. 3h–k and Supplementary Figs. 13 and 14). FO-32 and FO-35 were 
both more potent on average than cKK-E12 KK and SM-102 at every dose 
tested except for FO-35 at a high dose, though this difference was not 
always significant at each individual dose. At low doses, FO-35 was the 
most potent novel LNP, while at high doses, FO-32 was the most potent.

To better characterize the LNPs, we performed uptake, pKa, 
inflammation and biodistribution studies. First, by treating with 
macropinocytosis inhibitor 5-(N-ethyl-N-isopropyl)amiloride and 
dynamin inhibitor dynasore54, we found that micropinocytosis but 
not dynamin-mediated internalization were critical for uptake of 
4CR-based LNPs, similar to cKK-E12 but not SM-102 (Supplementary 
Fig. 15). Next, we found that while FO-32 LNPs had a pKa of 6.36, well 
within typical optimal range (close to 6.5) for potency55, EB-66 (pKa 
6.99) and especially FO-35 (pKa 7.67) were outside the typical range 
(Supplementary Fig. 16). LNP pKa is hypothesized to affect endosomal 
escape during acidification55. How LNPs with a basic pKa might facili-
tate delivery and endosomal escape will require further investigation. 
Lastly, we observed comparable inflammation and off-target systemic 
expression for all the LNPs we tested (Supplementary Fig. 17). Overall, 
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these results show great promise for intramuscular vaccination with 
FO-32 and FO-35.

Lipid testing for respiratory tract delivery. Next, we tested mRNA 
delivery to the respiratory tract. We first examined intranasal deliv-
ery of EB-66, FO-32 and FO-35 against the controls cKK-E12, SM-102 
and lipid 331 (a recently published lipid used for intranasal vaccina-
tion41), using a formulation previously reported for intranasal vac-
cination41. FO-32 and FO-35 matched or exceeded all controls (Fig. 4a 
and Supplementary Fig. 18a) and, hence, are promising candidates 
for intranasal vaccines. Immediately after imaging for nasal deliv-
ery, we extracted the lungs and trachea of the mice, finding again 
that FO-32 and FO-35 matched or exceeded the delivery of the other 
lipids (Supplementary Fig. 18b–g). We also tested a 1,2-dioleoyl-3-t
rimethylammonium-propane (DOTAP)-free formulation to potentially 
minimize inflammation but observed sharply reduced transfection; in 
any case, no formulation caused substantial systemic expression or 
inflammation (Supplementary Fig. 19).

To further test delivery to the lower respiratory tract, we 
used oropharyngeal aspiration (OPA) with a previously reported 
nebulization-compatible formulation42. Consistent with the intranasal 
results, FO-32 had highly potent lung delivery while FO-35 was not far 
behind. FO-32 also had 2.5-fold, 13-fold, 9-fold and 6-fold better deliv-
ery than the control lipids cKK-E12, SM-102, RCB-4-8 (developed spe-
cifically for pulmonary mRNA delivery46) and IR-117-17 (also developed 
specifically for nebulized pulmonary mRNA delivery42), respectively 
(Fig. 4b and Supplementary Fig. 20a). Delivery to the trachea (a poten-
tially valuable source of information regarding transfection of conduct-
ing airways) was noisier but broadly consistent with the intranasal and 
OPA results (Supplementary Fig. 20b,c). In a follow-up experiment 
testing FO-32 against the top control cKK-E12, we confirmed that FO-32 
was threefold more potent than cKK-E12 in the lung and dramatically 
more potent in the trachea (Fig. 4c–e and Supplementary Fig. 20d). 
Our top LNPs retained activity, encapsulation efficiency and low size 
upon freeze–thaw (Supplementary Fig. 21), showing the potential 
for long-term shipping and storage. FO-32 also matched IR-117-17 for 
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nebulized delivery using previously reported conditions that achieved 
state-of-the-art delivery with IR-117-17 (ref. 42) (Fig. 4f).

To test the translational potential of FO-32 and FO-35, we delivered 
Cre mRNA-loaded LNPs to Cre reporter ferret lungs via a tracheal micro-
sprayer (Fig. 5a,b). We first confirmed that a 0.6 mg kg−1 dose was well 
tolerated in juvenile ferrets and found that IR-117-17 formulated mRNA 
enabled delivery to the alveoli and terminal and respiratory bronchioles 
but not upper airways (Supplementary Figs. 22 and 23). Next, we treated 
adult ferrets with 0.6 mg kg−1 of FO-32-, FO-35- and 117-17-based mRNA 
LNPs. Histology images of each lobe are depicted in Supplementary 
Fig. 24, and detailed images are depicted in Fig. 5c–e. All three LNPs 
transfected alveoli (Supplementary Fig. 25), but IR-117-17’s transfection 
was confined to distal airways (Fig. 5c), while FO-32 and FO-35 expres-
sion were widespread throughout the airway tree (Fig. 5d,e). FO-35 
transfection was even observed in submucosal glands (Fig. 5e), the key 
structures for CF and other airway diseases38,56,57. IR-117-17’s contrast 
with FO-32 and FO-35 is interesting in light of its equal or better tracheal 
delivery in mice (Fig. 4f and Supplementary Fig. 20c), suggesting that 
despite the mouse trachea’s utility as a conducting airway biology 
model58–60 it may not be suited for predicting large animal gene therapy.

The whole-lung transfection quantification is complicated by 
uneven deposition over the lung using the microsprayer (since some 
airways would have zero transfection due to lack of locally depos-
ited LNP), but the quantification of highly transfected bronchi was 
consistent with the qualitative impression, with potency in the order 
FO-32 ≥ FO-35 >> IR-117-17 (Table 1). This indicates translational poten-
tial of FO-32 and FO-35 for pulmonary gene therapy and/or gene editing.

Lipid structural analysis. Next, we tested how structurally unique 
our top lipids were. As measured by Tanimoto similarity61, FO-32 had 
the closest structural analog (Supplementary Fig. 26a(i)), and though 
this analog did not have an alkyne, alkynes were present in the data-
set (Supplementary Fig. 26a(ii)) and have been reported to improve 
endosomal escape via increased fusogenicity62; FO-32 can, therefore, 
be thought of as combining groups identified in disparate screens to 
form a particularly potent lipid. However, alkyne tails performed poorly 
in vivo in our related three-component Ugi reaction library41, so this was 
a nonobvious combination. FO-35 and EB-66 were structurally unique, 
with lower Tanimoto similarity to the closest analog and no instances 
of their ketone tails in the training data (Supplementary Fig. 26b,c)—or, 
to our knowledge, in any publicly available ionizable lipid structure. 
It is possible that these bulky tails made the lipids more cone shaped, 
somewhat akin to branched tails. However, the nonobvious nature of 
these combined structures highlights the ability of LiON to identify 
unexpected structural elements that function synergistically. Precise 
mechanisms by which certain headgroup and tail combinations opti-
mize function will require additional investigation.

LiON 2.0: streamlining and cross validation. Lastly, we updated 
LiON to incorporate cross validation, a more reliable approach than 
individual test-training splitting. LiON now reports results for fivefold 
cross validation (Supplementary Fig. 27) and makes predictions on 
new libraries by averaging over the trained five-model ensemble. The 
model and training data are available at https://github.com/jswitten/
LNP_ML (ref. 63). Incorporation of additional datasets, model training, 
model performance analysis and predictions on new libraries can each 
be accomplished with a single command line prompt.

Discussion
Here, we report two practical uses of DL for LNP design. First, we 
identified two branched-ester ionizable lipids, RJ-A30-T01 and 
RJ-A14-T34 with greatly improved activity over the lead compound 
from the branched-ester training set, RM-133-3. This is an impor-
tant demonstration of DL’s ability to identify functional molecules 
for complex tasks lacking a clear, structure-defined objective, such 
as protein binding64. DL on these complex tasks requires training 
data, which means that for DL to be useful, it must improve upon 
the top hits found in that training data. RJ-A30-T01 and RJ-A14-T34 
cleared this hurdle and further showed that even the gold standard 
for LNP identification, barcoded in vivo screening, benefits from a 
DL-informed second pass.

Next, we used the 4CR chemistry to show that DL can extrapolate 
to new libraries to produce state-of-the-art lipids for mRNA deliv-
ery. This is another important result, as it demonstrates that in addi-
tion to being useful for secondary screens such as optimization of 
branched-ester lipids given an existing branched-ester dataset, LiON 
can design primary screens by prioritizing lipids to synthesize from a 
wholly new library.

Rational structure-activity relationship analysis has had success 
in the past27, so it is useful to consider its performance versus LiON. 
For the branched-ester library, because most of the hits from the prior 
screen had large tails, conventional SAR analysis focusing on the screen 
results would have been unlikely to identify RJ-A30-T01. For the 4CR 
library, incorporation of the branched-tail carboxylic acid shows the 
continued utility of rational design, but it seems unlikely that FO-35’s 
unique perillyl alcohol tail would have been identified without LiON 
suggesting it. The combination of introduction of novel structures 
with LiON and human refinement, thus, points to a situation in which 
human–artificial intelligence collaboration outperforms either one 
separately as has been observed in other fields65.

More broadly, almost all top ionizable lipid tails so far have been 
variations on a similar theme: linear or branched alkanes, incorporat-
ing ester or disulfide bonds for degradability and with occasional 
unsaturation1,66. The main exceptions are cholesterol and fat-soluble 
vitamins67–70. We believe that this limited structural range is a conse-
quence of basing ionizable lipid structures off lipids found in nature. 
LiON, by removing human bias and finding FO-35 and EB-66 with ter-
pene (perillyl alcohol and isopulegol, respectively) tails, points the way 
toward unexplored classes of potent ionizable lipids.

FO-32 and FO-35’s distinct mouse nose versus lung delivery and 
widespread ferret lung transfection (in comparison to IR-117-17’s 
alveolar-directed transfection) illustrate another point: LiON can iden-
tify lipids with delivery potential, but performance in specific tissue set-
tings must be verified experimentally. This reflects the largely in vitro 
training data, which carries no information about which organs will be 
targeted most effectively. Widespread multiorgan barcoded delivery 
data may help resolve this, though, as we show here, barcoded data have 
limitations. Single-LNP animal screening71 provides helpful training 
data but is resource intensive, particularly for nonmouse models. In 
addition to high-throughput in vivo delivery data, high-throughput 
toxicity and immunogenicity measurements would also amplify LiON’s 
usefulness by allowing for maximization of therapeutic index rather 
than potency alone.

Table 1 | The percentage of GFP+ cells out of the total 
number of bronchial epithelial cells in manually selected, 
highly transfected bronchi for each lobe, carina and trachea

Lung section FO-35 FO-32 IR-117-17

Carina 1.46 82.71 1.33

Trachea 39.55 31.21 1.72

Right upper lobe 36.3 69.6 0.28

Right middle lobe 1.76 63.77 2.27

Right lower lobe 4.18 81.55 1.81

Left upper lobe 4.69 58.5 0.8

Left lower lobe 22.98 18.43 1.34

Accessory lobe 2.12 79.48 1.71

Average 14.13 60.66 1.41
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The lead LNP formulations using FO-32 and FO-35 demonstrate 
considerable promise as candidates for intramuscular and intranasal 
vaccines, as well as for pulmonary gene therapy to treat difficult and 
deadly lung diseases14,72–74. The ferret pulmonary delivery is particu-
larly important because, as we show here, results in mice may not 
translate to higher mammals; IR-117-17’s efficient delivery in mice42 
translates to ferret alveoli but not to conducting airways important 
for muco-obstructive lung disease. Additionally, many lung diseases 
have at least some contribution from both alveolar and conducting 
airways75,76, so FO-32 and FO-35’s whole-lung transfection could be 
useful for treating multiple relevant pathologies. Moving forward, 
we expect LiON and DL more broadly to generate many promising 
candidates for nanoparticle-based gene therapy.
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Methods
Chemical synthesis of 4CR lipids
All reagents and solvents were purchased commercially unless noted 
otherwise. The amine and ketone were dissolved in dichloromethane 
and agitated at room temperature for 1 h. Then, the carboxylic acid was 
dissolved in methanol and added to the reaction vessel followed by a 
subsequently addition of the isocyanide. The four reactants were com-
bined in an equimolar fashion. Dichloromethane and methanol were 
used at a volumetric ratio of 2:1. After addition of all four components, 
the reaction was agitated at room temperature for a minimum of 5 days. 
The solvent was removed via rotary evaporation before purification. 
Flash chromatography was performed on an ISCO CombiFlash Lumen 
instrument using ISCO RediSep Flash Cartridges. The ionizable lipids 
were purified using a solvent system of dichloromethane and methanol 
with 0.1% ammonium hydroxide (10:1 volumetric ratio). The product 
was collected, and the solvent was removed. The final compounds were 
confirmed via mass spectrometry and 1H nuclear magnetic resonance 
(NMR). Because the yield of the reactions was typically low (<10%), two 
(and occasionally three) successive CombiFlash purifications were 
often required to generate pure product. Mass spectrometry was 
performed using a high-resolution Agilent 6545 mass spectrometer 
coupled to an Agilent Infinity 1260 liquid chromatography system. 
Spectra collection was performed with the ionizable lipid sample dis-
solved in liquid chromatography–mass spectrometry grade methanol. 
1H NMR was performed using a three-channel Bruker Advance Neo 
spectrometer operating at 400.17 MHz. The spectra collection was 
performed with the ionizable lipid sample dissolved in deuterated 
chloroform. Top performing lipids after screening (FO-32, FO-35 and 
EB-66) were fully characterized by NMR.

Isocyanide intermediate synthesis for 4CR lipids
All isocyanides, with the exception of oleyl isocyanide, were purchased 
commercially. The synthesis of the oleyl isocyanide is described in 
detail in Supplementary Information.

Ketone intermediate synthesis for 4CR lipids
Ketone intermediates were synthesized following the procedure 
reported in Li et al.41

Carboxylic acid intermediate synthesis for 4CR lipids
The carboxylic acids were synthesized using Sterglich esterification. 
The dicarboxylic acid, alkyl alcohol, N-(3-dimethylaminopropyl)-N′- 
ethylcarbodiimide hydrochloride, 4-(dimethylamino) pyridine 
and N,N-diisopropylethylamine were combined at molar ratios of 
1:1:1.5:0.5:2, respectively. The reaction was carried out at room tem-
perature in dichloromethane for 24 h. The solvent was removed via 
rotary evaporation before purification. Flash chromatography was 
performed on an ISCO CombiFLash Lumen instrument using ISCO 
RediSep Flash Cartridges. The ionizable lipids were purified using a 
solvent system of dichloromethane and methanol (10:1 volumetric 
ratio). The product was collected and the solvent was removed.

Chemical synthesis of branched-ester lipids
The branched-ester lipids were synthesized as previously reported35 
and further details are provided in Supplementary Information. Ricin-
oleic acid intermediates and top-performing lipids after screening 
(RJ-A30-T01) were fully characterized by NMR.

A549 formulation screen
The A549 cells were plated in 384-well white plates (2,000 cells per 
well) and left to grow overnight. The next day, LNPs were hand-mixed 
with the appropriate formulation and ionizable lipid, and the cells were 
treated with 20 ng of FFL mRNA per well (n = 3 wells per LNP). The cells 
and LNPs were incubated overnight and luminescence was read the 
next day using Bright-Glo (Promega). The results of this screen can be 

found in Supplementary Information in rows with ‘Experiment_ID’ = 
‘A549_form_screen’. Each row contains formulation parameters, ioniz-
able lipid SMILES and log luminescence.

Data collection
To collect data available in the literature, we wrote code to translate 
colors from heat maps to delivery potency as specified by the color 
scheme in the relevant publication. Supplementary Fig. 28 shows 
representative heat maps, with the dots showing the locations from 
which the colors were measured, confirming that we are drawing from 
the correct pixels to interpret delivery. We also routinely checked 
each scraped heat map to see that randomly selected good and bad 
transfection candidates were assigned to the correct lipid. We also 
algorithmically generated the SMILES form of each chemical structure 
based on the input components for each ionizable lipid. For the only 
literature-collected dataset not available in heat map form, the Den 
Liver dataset44, we used the in vivo data in Fig. 3b by classifying each 
lipid (discarding the generation two and above dendrimers) by relative 
factor VII activity, discretizing by the scale at the top of the plot as being 
in ranges [0,0.25), [0.25, 0.5), [0.5, 0.75) and [0.75, 1].

While collecting the data, we assumed that datapoints are directly 
comparable within individual screens but not necessarily between dif-
ferent screens or testing modalities. To avoid overemphasis on any one 
dataset, we log-transformed luminescence measurements that varied 
over multiple orders of magnitude and standardized each differently 
measured dataset to have mean 0 and standard deviation 1.

DL model
We used Chemprop50, a Python package built for DL on molecular 
structures. The metadata (formulation, target and so on) were included 
as ‘custom features’. Where hyperparameter optimization was speci-
fied, we used the built-in grid search with 20 possible hyperparameter 
sets; our optimized parameters were set to: depth of 4, dropout of 0.1, 
three feedforward network layers and hidden layer sizes of 600 net-
works. For the model trained only on the size 384 screen, the optimized 
parameters were: depth of 4, dropout of 0, three feedforward network 
layer and hidden layer sizes of 300 networks. For a given training– 
validation–test split, the models were trained five separate times, and 
the overall prediction was the average over this ensemble.

LNP synthesis
LNPs for the branched-ester work were synthesized by mixing an aque-
ous phase containing the mRNA with an ethanol phase containing the 
lipids in a microfluidic chip device77. The aqueous phase was prepared 
in a 10 mM citrate buffer with corresponding mRNA (provided by 
Sanofi). The ethanol phase was prepared by solubilizing a mixture of 
ionizable lipid, DOPE, cholesterol and 1,2-dimyristoyl-sn-glycero-3-p
hosphoethanolamine-N-(methoxy(polyethylene glycol)-2000) 
(C14-PEG2000), at mass ratios of 72.3:7.8:15.6:4.2 ionizable lipid:DOPE: 
cholesterol:C14-PEG2000 and a 20:1 ionizable lipid:mRNA weight ratio35. 
To prepare the ethanol phase, ionizable lipids insoluble at a 20 mg ml−1 
stock concentration were heated until soluble, up to ~60–70 °C, and 
then added to the rest of the ethanol phase. Additionally, for insoluble 
lipids, the complete ethanol phase was kept heated to 37 °C until imme-
diately before LNP synthesis. The aqueous and ethanol phases were 
mixed at a 3:1 ratio by syringe pumps to a final mRNA concentration 
of 0.05 mg ml−1. Despite these measures, LNPs generated from lipids 
with greater than or equal to four tails were still noticeably cloudy.

For the 4CR experiments, all n = 1 intramuscular screening was done 
with hand-mixed undialyzed LNPs, and all other testing was done with 
microfluidic synthesis. The KK formulation was 35:16:46.5:2.5 ionizable 
lipid:DOPE:cholesterol:C14-PEG2000, and formulation F3 was 25:15:58.5:1.5 
ionizable lipid:DOPE:cholesterol:C14-PEG2000. Intranasal experiments 
used a 30:39:30:1 ionizable lipid:DOTAP:cholesterol:C14-PEG2000 formu-
lation. Nebulization and OPA experiments used the T1-5 formulation 
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(35:28:34.5:2.5 ionizable lipid:DOTAP:cholesterol:C14-PEG2000, using a 
nominal ionizable lipid molecular weight of C12-200, 1,137 g mol−1)42. All 
4CR formulations used a 10:1 ionizable lipid:mRNA weight ratio.

SM-102, MC3 and lipid 5 controls were formulated according to 
50:10:38.5:1.5 ionizable lipid:distearoylphosphatidylcholine (DSPC)
:cholesterol:C14-PEG2000.

All helper lipids were from Avanti Polar Lipids.
Microfluidically synthesized LNPs were dialyzed against PBS, in 

a 10,000 molecular weight cut-off (MWCO) Pierce 96-well microdi-
alysis plate (ThermoFisher) or 20,000 MWCO dialysis cassette (Ther-
moFisher). For the nebulization experiment, following a 4-h dialysis in 
PBS, LNPs were dialyzed in 100 mM sodium acetate buffer overnight 
and nebulized with 2% w/v branched PEG20K acrylate (Sigma)42.

The LNPs were concentrated using 100,000 MWCO centrifugation 
filters (Sigma or ThermoFisher) at 4 °C. Total RNA and encapsulation 
efficiencies were measured using a Ribogreen assay (ThermoFisher).

For the Cre reporter experiments and freeze–thaw testing, LNPs 
were synthesized, dialyzed and concentrated, and the aliquots were 
flash-frozen in liquid nitrogen with 5% sucrose cryoprotectant. The 
aliquots were shipped in dry ice for testing.

In vivo luciferase and Epo testing
For liver-targeted luminescence testing, C57BL/6 mice were injected 
intravenously with LNPs encapsulating FFL mRNA. For intranasal 
delivery, 15 µl per mouse was delivered to anesthetized mice. OPA 
administration was performed as previously described to deliver 50 µl 
of LNPs78. Specifically, mice were anesthetized and then hung up on 
a wire by their top teeth. Their tongues were pulled out and 25 µl of 
LNPs were pipetted to the back of the throat. After several breaths to 
make sure those 25 µl were inhaled, another 25 µl were administered.

To image luminescence, 200 μl per mouse of XenoLight d-luciferin 
(20 mg ml−1 solution in Dulbecco’s phosphate-buffered saline (DPBS); 
PerkinElmer) was injected to each mouse through intraperitoneal 
injection 6 h after LNP administration. To image mice following intra-
venous, intranasal or OPA administration, the mice were killed 8–9 min 
after intraperitoneal injection. The relevant organs were collected and 
imaged under Xenogen in vivo imaging system. The total flux (photons 
per second) of bioluminescence in each organ was quantified. For 
nasal imaging, the mice were imaged while anesthetized and before 
euthanasia. For intramuscular injection, the mice were imaged while 
anesthetized and not killed.

For Epo testing, C57BL/6 mice were injected intravenously with 
LNPs encapsulating Epo mRNA. A total of 6 and 24 h after injection, 
the serum was collected and assayed for human Epo using an ELISA 
(Abcam, product ab274397).

The nebulization experiment was conducted as previously 
described using a whole-body nebulization chamber and a vibrating 
mesh nebulizer42. Specifically, mice were placed in a nebulization 
chamber (adapted from a standard mouse anesthesia chamber) and 
LNPs were placed in a vibrating mesh nebulizer (Aeroneb Lab Nebulizer 
Unit, Small VMD). The aerosolized LNPs were connected via a tee junc-
tion to the nebulization chamber and oxygen at 15 feet3 h−1 was used 
to blow aerosol into the chamber. Nebulization was performed until 
aerosol was no longer being made.

All procedures were performed under an animal protocol 
approved by the Massachusetts Institute of Technology Committee 
on Animal Care and the guidelines for animal care in an Massachusetts 
Institute of Technology animal facility.

Inflammatory and toxicity measurements
The serum was collected via submandibular blood collection and 
measured for cytokine levels by Eve Technologies and for alanine 
aminotransferase (ALT) and aspartate transaminase (AST) by the  
Massachusetts Institute of Technology Division of Comparative Medi-
cine Diagnostic Lab.

Nanoparticle characterization
For pKa measurements, a total of 16 buffers ranging from pH values 
of 2 to 11 were prepared using 100 mM stocks of citric acid, sodium 
monobasic phosphate and sodium bicarbonate. A stock solution of 
6-(p-toluidino)-2-naphthalenesulfonic acid sodium salt (TNS) in water 
was prepared at 150 µM, and the LNPs were prepared at 100 ng µl−1 
mRNA concentrations. In a black 96-well plate, 88 µl of buffer, 10 µl of 
LNP and 2 µl of TNS were added in each well. The TNS fluorescence of 
each well was measured, and the half maximal point of the resulting 
fluorescence was calculated as the LNP pKa.

The size was measured using a Wyatt Dyna Pro Plate Reader 
Dynamic Light Scattering instrument.

Flow cytometry
A total of 10,000 HeLa cells per well were plated and allowed to grow 
overnight. The next day, the HeLa cells were incubated with DiI-labeled 
LNPs for 4 h, then detached by washing with 1× PBS and treatment by 
0.25% trypsin–EDTA buffer for 5 min. The cells were then stained by 
eFluor 780 Live/Dead (Invitrogen 65-0865-14) in 1× PBS for 30 min 
at 4 °C, before washing by 1× PBS two times and overnight fixation 
by 0.5% paraformaldehyde in 1× PBS. The cells were resuspended 
in 1× PBS containing 5% FBS and then analyzed by a FACSymphony 
A3 flow cytometer (BD Biosciences). The DiI dye and eFluor 780 dye 
were analyzed by excitation at 561 and 640 nm, respectively. The 
DiI-labeled LNPs were formulated with 0.5 mol% DiI with cholesterol 
content reduced by 0.5 mol% to compensate. The data were analyzed 
using FlowJo v10.10.0.

Ferret Cre reporter testing
The ROSA-TG ferret model used in this test harbors a CRE-recombinase- 
responsive reporter cassette ‘CAG promoter-LoxP-(m)tdTomato-STOP- 
loxP-(m)eGFP)’ integrated within the ROSA locus. This cassette 
expresses a membrane-bound tdTomato reporter. Upon introduction 
of CRE expression in the recipient cells, a conversion of red to green flu-
orescence occurs due to the excision of the ‘tdTomato-STOP’ element, 
which consequentially leads to the expression of membrane-bound 
enhanced green fluorescent protein (eGFP) reporter79. The 2-month-old 
juvenile ROSA-TG ferrets were used to test the low (150 ng µl−1 total RNA 
concentration) and high dose (300 ng µl−1 total RNA concentration) 
of IR-117-17 LNP-Cre mRNA. The 1–2-year-old adult ROSA-TG ferrets 
were used to test the FO-32, FO-35 and IR-117-17 Cre mRNA LNPs. The 
doses were intratracheally administrated with LNP-Cre mRNA using a 
spray atomizer at a volume of 2 ml kg−1 (refs. 80,81). Lung and tracheal 
tissue from these ferrets were collected 2 weeks after administration, 
fixed with 4% PFA and embedded in OCT for dissection. The slides were 
observed with a Leica DM68 microscope. The GFP cell turnover rate of 
the whole epithelial cell on the bronchial airway was quantified using 
FiJi version 2.9.0. All ferret experimentation was performed according 
to protocols approved by the Institutional Animal Care and Use com-
mittees of the University of Iowa.

Statisticals and reproducibility
Statistical analysis was conducted using GraphPad Prism 9, except 
for Fig. 1f,g, which used the scipy.stats.pearsonr function. Mul-
tiple comparisons were performed between each new artificial 
intelligence-designed lipid, and each control lipid, that is, cKK-E12 and 
SM-102 were not compared with each other. All tests were two-sided. 
For zoomed-in images of airway transfection, due to uneven LNP depo-
sition, it was not possible to identify fully representative images, so 
whole-lobe images were searched for transfected locations that were 
used for figures.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.
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Data availability
All code and data used for training models can be found at GitHub via 
https://github.com/jswitten/LNP_ML (ref. 63). Source data are provided 
with this paper.

Code availability
All code and data used for training models can be found at GitHub via 
https://github.com/jswitten/LNP_ML (ref. 63).
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