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Large-scale omics profiling has uncovered a vast array of somatic mutations
and cancer-associated proteins, posing substantial challenges for their
functional interpretation. Here we present a network-based approach

centered on FunMap, a pan-cancer functional network constructed using
supervised machine learning on extensive proteomics and RNA sequencing
datafrom 1,194 individuals spanning 11 cancer types. Comprising 10,525
protein-coding genes, FunMap connects functionally associated genes
with unprecedented precision, surpassing traditional protein-protein
interaction maps. Network analysis identifies functional protein modules,
reveals a hierarchical structure linked to cancer hallmarks and clinical
phenotypes, provides deeper insights into established cancer drivers

and predicts functions for understudied cancer-associated proteins.
Additionally, applying graph-neural-network-based deep learning to
FunMap uncovers drivers with low mutation frequency. This study
establishes FunMap as a powerful and unbiased tool for interpreting
somatic mutations and understudied proteins, with broad implications for
advancing cancer biology and informing therapeutic strategies.

Advancementsin next-generation sequencing and mass spectrometry
(MS) have transformed cancer research. Large-scale initiatives such as
The Cancer Genome Atlas (TCGA), the International Cancer Genome
Consortium and the Clinical Proteomic Tumor Analysis Consortium
(CPTAC) have greatly deepened our understanding of cancer, revealing
avast array of somatic mutations and cancer-associated proteins. These
advancements present new challenges in the functional interpreta-
tion ofidentified mutations and proteins, especially for the numerous
low-frequency mutations' and understudied proteins’.
Protein-protein interaction networks have been instrumental
in prioritizing somatic mutations and predicting the functions of
uncharacterized proteins®~. However, many of the known interac-
tions were identified in noncancer contexts, limiting their relevance
to cancer research. Recent efforts have started to address this gap
by mapping interactions for selected proteins in specific cancer cell
lines®’. Despite these advances, unbiased, genome-scale identification

of protein—-proteininteractions across diverse cancer types remainsa
daunting task. Moreover, in vitro cell line models have inherent limi-
tations, such as the absence of the tumor microenvironment. mRNA
coexpression has also been used to infer functional associations but
with varied success®’. Studies have shown that protein expression data
aremore closely aligned with gene function and that protein coexpres-
sionisamuch stronger predictor of functional association than mRNA
coexpression'®™,

Inthis paper, weintroduce FunMap, a functional network of 10,525
genes constructed using a supervised machine learning method that
integrates proteomics and RNA sequencing (RNAseq) data from 11
cancer types, recently harmonized by the CPTAC pan-cancer working
group®. FunMap connects functionally related genes with unprec-
edented precision, surpassing existing protein-protein interaction
networks. Through network analysis, FunMap uncovers protein mod-
ulesand ahierarchical modular organization linked to cancer hallmarks
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and clinical phenotypes, predicts the functions of understudied cancer
proteins, offers deeper insights into established cancer drivers and
identifies drivers with low mutation frequency. To facilitate broader
use in cancer research, we provide an interactive web application
(https://funmap.linkedomics.org/) and source code (https://github.
com/bzhanglab/funmap).

Results

Protein coexpression strongly predicts cofunctionality

We used MS-based proteomics and RNAseq data from 11tumor cohorts
(Supplementary Table 1) to quantify gene coexpression at the protein
and mRNA levels, respectively. Cancer types included breast invasive
carcinoma (BRCA), clear cell renal cell carcinoma (CCRCC), colon
adenocarcinoma (COAD), glioblastoma (GBM), hepatocellular car-
cinoma (HCC), head and neck squamous cell carcinoma (HNSCC),
lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LSCC),
ovarianserous cystadenocarcinoma (OV), pancreatic ductal adenocar-
cinoma (PDAC) and uterine corpus endometrial carcinoma (UCEC).
Tumor samples ranged from 83 to 159 per cohort and five cancer types
also had sufficient normal samples with proteomics and RNAseq data,
leading to 16 proteomics and 16 RNAseq datasets (Fig. 1a). Each prot-
eomics datasetincluded 7,961-11,815 genes (Fig. 1b), with a median of
10,441and aunion of 14,070 genes, among which 6,602 were identified
acrossalll6 datasetsand 10,024 were identified in 10 or more datasets
(Fig. 1c). Each RNAseq dataset included 17,733-19,113 genes (Fig. 1b),
with amedian 0f 18,740 and a union 0f 19,855 genes, among which 15,603
were identified across all 16 datasets (Fig. 1c).

To assess the relationship between gene coexpression and cofunc-
tionality, we used a previously published ‘gold standard’ derived from
the Reactome pathway database™. This gold standard defines gene
pairs coannotated in the same ‘detailed’ pathway (<200 genes) as posi-
tive pairs and those without shared pathway annotations as negative
pairs. Itincludes 205,284 positive and 11,327,528 negative gene pairs.
This extensive dataset allowed us to quantify the functional relevance
of any specific set of gene pairs by calculating the log likelihood ratio
(LLR), with higher LLRs indicating stronger evidence of functional
relevance (Methods).

For each proteomics and RNAseq dataset, we ranked gene pairs
by their Pearson’s correlation coefficients (PCCs) and computed LLRs
for the top 10,000-300,000 pairs. LLRs showed a decreasing trend
across all datasets (Fig. 1d). In most tumor datasets, proteomics data
consistently yielded higher LLRs than RNAseq, indicating greater
functional relevance. However, in normal datasets, proteomics LLRs
were similar to or lower than RNAseq LLRs. This may be explained
by the low intersample heterogeneity in normal protein datasets
(Extended DataFig.1), hindering the detection of correlations between
functionally related genes. The low intersample heterogeneity likely
also contributed to the lower LLRs in normal protein datasets com-
pared to tumor protein datasets. Interestingly, despite lower hetero-
geneity in tumor protein datasets compared to tumor RNA datasets
(Extended Data Fig. 1), the higher LLRs in the protein data suggest
that thislevel of heterogeneity is sufficient for detecting functionally
relevant correlations.

Todelve deeperinto how mRNA and protein coexpression patterns
relate to gene cofunctionality within the tumor datasets, we grouped
gene pairs into 400 two-dimensional bins on the basis of their correla-
tions in both proteomics and RNAseq data and then computed LLRs
for each bin (Fig. 1e). Gene pairs with higher protein correlation con-
sistently displayed elevated LLR scores, even when mRNA correlation
was moderately positive or even negative. While gene pairs with higher
mRNA correlation also tended to have higher LLR scores, these higher
scores were more frequently observedin areas where there were strong
correlations at both mRNA and protein levels. Together, these results
demonstrate that, while both proteinand mRNA correlationsindicate
gene cofunctionality, protein correlationis amuch stronger predictor.

A machine-learned functional map

We used supervised machine learning tointegrate the diverse predic-
tive signals from all 32 proteomics and RNAseq datasets to construct
a comprehensive functional network. Normal sample datasets were
included because they were derived from tumor-adjacent normal
tissues, which provide clinically relevant biological information'®.
Despite varying magnitudes, each dataset displayed functional rel-
evance (LLR >1; Fig. 1d). To account for differences in sample size and
intersample heterogeneity across datasets, we computed PCC-based
mutual rank (MR) scores for all gene pairs within each dataset (Meth-
ods), as MR is a robust metric for assessing gene coexpression across
diverse datasets".

We used 50% of the gold-standard positive and negative gene
pairsastraining datatobuild an extreme gradient boosting (XGBoost)
model, using MR scores from the 32 datasets as features to distinguish
the positive and negative gene pairs (Methods). Feature importance
analysis revealed that tumor protein features contributed the most
(61.5%), followed by tumor RNA (20.7%), normal RNA (9.0%) and normal
protein (8.8%) (Extended Data Fig. 2). Among individual datasets, the
tumor protein data from LSCC contributed the most.

Thetrained model was applied to all 98,975,415 gene pairs, which
were then sorted by predicted probabilities. LLRs were computed
using the remaining 50% set-aside gold-standard gene pairs for the
top-ranked gene pairs from the top 50,000 to 250,000 (Fig. 2a).
Similarly, we trained two additional XGBoost models using only the
16 proteomics datasets or the 16 RNAseq datasets and plotted the
LLR curves. For comparison, we included LLR curves from a baseline
method based on average PCCs across the 32 datasets and the LSCC
tumor protein data alone. Interestingly, the LSCC tumor proteomics
dataset performed as well as or better than the combined RNAseq
datasets, underscoring the pivotal role of protein-level regulation in
coordinating gene function. The XGBoost model combining all data-
sets clearly outperformed the baseline method according to average
PCCs, highlighting the advantage offered by machine learning. It also
outperformed the model combining only the proteomics datasets,
whichin turn outperformed the model combining only the RNAseq
datasets or the LSCC tumor proteomics data alone, demonstrating the
value of dataintegration in gene cofunctionality prediction.

Applying an LLR cutoff of 3.912 (thatis, alikelihood ratio (LR) of 50)
totheresults fromthe XGBoost model combiningall 32 datasets yielded
afunctional association network with 10,525 genes and 196,800 edges,
which was named FunMap (Supplementary Table 2). With an LR of 50,
edges are 50 times more likely to connect functionally associated gene
pairsthanunrelated pairs. We compared FunMap’s functional relevance
and proteome coverage to other networks used insystems biology studies
(Fig.2b).FunMap and the ProHD", both based primarily on protein coex-
pression, showed similar LR scores (50 and 56, respectively), although
ProHD covered only 2,680 genes. These scores were much higher than
those of BioPlex™ (LR =28), HuRI"” (LR =10), HI-Union' (LR =10) and
BioGRID? (LR =14), networks based on experimentally obtained pro-
tein—-proteininteractiondataor curated protein and genetic interaction
data. While FunMap showed higher proteome coverage than HuRI and
HI-Union, BioPlex and BioGRID covered more genes (13,854 and 17,259,
respectively). The STRING network? had the highest LR score (LR =187)
and deep coverage of 16,351 genes; however, unlike the other purely
data-driven networks, itincorporated existing knowledge during network
construction, including that used for our evaluation.

Genesin FunMap overlapped significantly with those in other net-
works (Fig.2c) but its edges showed limited overlaps (Fig. 2d), indicat-
ing a substantial number of additional functional associations. While
tumor versus normal differences were not used in FunMap’s construc-
tion, analysis of the five cancer types with normal samples revealed that
60-74% of FunMap edges connected genes with consistent significant
overexpression or underexpression in tumors (adjusted P < 0.01, Wil-
coxonrank-sumtest; Fig. 2e). These percentages significantly exceeded
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d, LLRs quantifying functional relevance of the top-ranking gene pairs based on
the PCC from the top 10,000-300,000 in each dataset. e, Distributions of LLRs of
the gene pairs with a given mRNA coexpression (x axis) and protein coexpression
(yaxis) patternin the 11 tumor datasets. The density plots on the top and right
visualize the mRNA and protein coexpression distributions, respectively.

Fig.1| Protein coexpression is astrong predictor of gene cofunctionality.

a, Proteomics and RNAseq data from tumor (T) and normal (N) samples across 11
cancer cohorts used in this study. The number of samples (n) is indicated in the
plot. b, Numbers of quantified proteins and mRNAs in individual datasets.

¢, Numbers of proteins and mRNAs quantified across datasets. The numbers
inside blue shaded boxes indicate the numbers of datasets with quantitative data.
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Fig. 2| FunMap has high functional relevance, deep proteome coverage and
ascale-free, modular and small-world network topology. a, A supervised
machine learning model combining all 32 datasets (ALL_RNA_PRO (xgboost))
achieved higher LLRs across the whole range of top-scoring gene pair numbers
from 50,000-250,000 compared with the models combining only proteomics
datasets (ALL_PRO (xgboost)), only RNAseq datasets (ALL-RNA (xgboost)), the
average PCCacross the 32 datasets (ALL_RNA_PRO (average PCC)) or the PCCs
from the LSCC tumor proteomics data alone (LSCC-T_Pro (PCC)). Applying an
LLR cutoff of 3.912 (LR = 50) to results from the all-inclusive model produced a
network with 10,525 genes and 196,800 edges, which was named FunMap.

b, Scatter plot comparing functional relevance (y axis) and proteome coverage
(xaxis) of FunMap and other networks. The red horizontal linesinaand b

indicate the LLR cutoffapplied for FunMap, while the gray vertical lineina
represents the number of gene pairs at the selected LLR cutoff. ¢, Gene overlap
between FunMap and other networks. d, Edge overlap between FunMap and
other networks. e, Box plots depicting proportion of edges connecting proteins
with consistent significant overexpression or underexpression in tumors versus
normal samples (n =5 cohorts) for FunMap and other networks. For box plots,
the center lineindicates the median, box limits indicate the upper and lower
quartiles and whiskers indicate 1.5x the interquartile range. P values were derived
from a paired ¢-test followed by adjustment based on Holm’s method. f, Degree
distribution of FunMap. p(x) is the probability of nodes having a specific degree
x.g-i, Plots comparing the average clustering coefficient (g), density (h) and
average shortest path length (i) of FunMap and other networks.
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those found in the other networks (P < 0.001, paired ¢-test; Fig. 2e),
suggesting a stronger connection of FunMap to cancer.

FunMap showed a power-law degree distribution (Fig. 2f), indi-
cating a scale-free topology with highly connected hubs. Compared
to other networks, FunMap was characterized by a relatively higher
average clustering coefficient (similar to STRING), relatively higher
density (similar to BioGRID) and the highest average shortest path
length (Fig. 2g-i). Together, these results suggest the high functional
relevance, cancer relevance and proteome coverage of FunMap, as well
asitsscale-free, modular and small-world properties.

Cancer-associated dense modules

A high clustering coefficient of FunMap suggests that genes in the
network tend to form clusters or modules. To assess FunMap’s ability
to connect genes encoding proteins in the same functional module,
we used the CORUM database®’, which contains 5,204 manually anno-
tated mammalian protein complexes involving 5,299 genes. Among
the 196,800 edges in FunMap, 14,401 (7.3%) connected genes encod-
ing proteins in the same CORUM complex (Fig. 3a). Strikingly, both
the absolute count and the percentage of the edges overlapping with
CORUM in FunMap were higher than those in the BioPlex network
(6,747,4.4%; Fig. 3a). As BioPlex was designed to experimentally iden-
tify protein complexes through affinity purification combined with
MS, these results underscore FunMap’s potential in unveiling tightly
coregulated functional modules.

Some CORUM complexes associated with cancer-related
processes displayed robust connectivity among their members
in FunMap but not in BioPlex, such as complexes involved in cell
cycle and DNA replication, gene expression and regulation, signal
transduction, cell motility and innate immunity (Fig. 3b). Unlike
BioPlex, which used data from only two in vitro cell lines, FunMap
used datafromover1,000 human tumor samples, making it poten-
tially more effective in uncovering functional modules relevant to
in vivo cancer biology.

To extend our analysis beyond CORUM complexes, we applied the
iterative clique enumeration (ICE) algorithm? to FunMap (Methods).
This algorithm identifies relatively independent cliques, which are
fully connected subnetworks (dense modules) with limited overlap to
eachother. Through this approach, we identified 281 dense modules,
each with five or more genes (Supplementary Table 3). Of these, 130
(46%) overlapped significantly with CORUM complexes, an additional
37 (13%) overlapped with BioPlex complexes and another 49 (17%)
overlapped with Gene Ontology (GO) annotations (false discovery
rate (FDR) < 0.05, Fisher’s exact test followed by Benjamini-Hochberg
adjustment; Fig. 3cand Supplementary Table 3). These results empha-
sizethe functional coherence of genes within these de novo identified
dense modules.

To evaluate the cancer relevance of these dense modules, we com-
pared the average standardized protein abundance between tumor
and normal samples for each of the five cancer types (Supplementary
Table 3). Ofthe 276 modules with sufficient data for statistical analysis,
273 showed significantly different abundance intumors compared with
normal samplesinatleast one cancer type (adjusted P < 0.01, Wilcoxon
rank-sum test followed by Benjamini-Hochberg adjustment). Notably,
43 of the 273 (16%) had no significant overlap with CORUM, BioPlex
or GO annotations (adjusted P> 0.01, hypergeometric test) and 203
(74%) had more than half of their edges unique to FunMap compared
toother networks (Supplementary Table 3). These observations under-
score the value of FunMap in uncovering previously unrecognized,
cancer-relevant dense modules.

Atotal of 78 dense modules showed significant differential expres-
sion across all five cancer types, with 36 (46%) having less than 25%
edge overlap with the other networks (Extended Data Fig. 3a). Many
overexpressed modules were enriched in processes related to replica-
tionand proliferation. Moreover, three highly overexpressed modules

(cliques160, 96 and 54) were associated with extracellular matrix (ECM)
organization (Fig.3d,e and Extended Data Fig.3b-e) and higher mod-
ulelevels were significantly associated with or trending toward worse
overall survival (OS) in various cancer types (Fig. 3f, Extended Data
Fig. 3f,g and Supplementary Table 3). Fewer modules were underex-
pressed and those related to cell adhesion (cliques 46 and 17; Fig. 3g,h
and Extended Data Fig. 3a) may contribute to increased cell motility
and tumor aggressiveness. This was supported by tumors with under-
expression of clique 46 showing worse OS in HCC (Fig. 3i).

In summary, these results demonstrate the ability of FunMap to
identify functionally and clinically relevant dense modules. Impor-
tantly, many of these modules were associated with cancers of diverse
histological origin but had limited overlap with other networks, high-
lighting aunique connection of FunMap to cancer biology and disease
progression.

Hierarchical modular organization linked to cancer hallmarks

The coexistence of scale-free topology (Fig. 2f) and a high cluster-
ing coefficient (Fig. 2g) in FunMap indicates a hierarchical modular
organization, where genes form smaller modules that combine into
larger ones across multiple scales*. Using the network seriation and
modularization (NetSAM) algorithm?, a specialized computational
tool for uncovering the hierarchical organization in biological net-
works, we identified eight hierarchical levels and 255 modules with
atleast 20 genes in FunMap (Fig. 4 and Supplementary Table 4). Of
these, 243 (95%) significantly overlapped with at least one GO anno-
tation (FDR < 0.05, Fisher’s exact test followed by Benjamini-Hoch-
bergadjustment; Supplementary Table 4), indicating their functional
coherence.

We focused on the enriched GO annotations that have been previ-
ously linked to cancer hallmarks** (Supplementary Table 4). The top
tenlargest branches were associated with various hallmarks (Fig. 4 and
Methods), including tumor microenvironment-related hallmarks such
asavoidingimmune destruction and tumor-promoting inflammation,
withthe largest branch linked to tumor-promoting inflammation (1,118
genes). These findings underscore the strength of using tumor-derived
datainnetwork construction, which can capture complex, biologically
importantinformation that may be missed in cell-line-based protein-
proteininteraction networks.

To assess the clinicalimportance of these modules, we calculated
meta P values for differential expression between tumors and nor-
mal samples across the five cancer cohorts (Supplemental Table 4).
Tumor-overexpressed branches were linked to hallmarks such as
enabling replicative immortality, genome instability and mutation,
sustaining proliferative signaling, evading growth suppressors,
avoiding immune destruction, resisting cell death and activating
invasion and metastasis (Fig. 4). A detailed examination of these
branches revealed their hierarchical functional organization. For
example, the level 3 module L3_MS55, associated with ‘protein fold-
ing’ and ‘protein transport’, was divided into two level 4 modules:
L4_M58 (protein folding) and L4_M59 (protein transport) (Fig. 5a).
The latter was further split into level 5 modules for ‘protein target-
ing to the endoplasmic reticulum (ER)’ (L5_M51) and ‘ER to Golgi
vesicle-mediated transport’ (L5_M50). In tumor cells, ongoingreplica-
tion, growth and genetic aberrations disrupt protein homeostasis®®,
increasing the need for protein folding and related protein transport
to resist cell death and avoid immune destruction, two hallmarks
linked to this branch. Overexpression of the protein folding mod-
ule (L4_M58) was associated with worse OS in CCRCC (Fig. 5b), with
similar trendsin HNSCC, LUSCC and LUAD (Supplementary Table 4),
supportingits protumor role.

Tumor-underexpressed branches were linked to cancer hallmarks
including deregulating cellular energetics, tumor-promoting inflam-
mation, inducing angiogenesis and activating invasion and metastasis
(Fig. 4). Although the association with tumor-promoting hallmarks
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Fig.3|FunMap reveals known and previously unidentified dense modules
associated with cancer biology and clinical phenotype. a, Overlap among
gene pairs in FunMap, BioPlex and gene pairs encoding proteins in the same

CORUM complex. b, Examples of CORUM complexes displaying robust

connectivity among their complex members in FunMap but not in BioPlex.

¢, Numbers of de novo predicted FunMap dense modules with a significant
overlap with CORUM complex, BioPlex complex or GO term (P < 0.05, Fisher’s
exact test, blue shaded sections). d, A tumor-overexpressed, ECM-associated
dense module (clique 160). Edge color indicates a lack of overlap in BioGRID,
BioPlex, HI-union, STRING and CORUM (pink) or overlap in any of these resources
(gray). e, Box plots comparing the average protein abundance of clique 160in
tumor and normal samples demonstrating tumor overexpression in five cancer
cohorts. The number of samples (n) isindicated in parentheses. Pvalues were
determined using a two-sided Wilcoxon rank-sum test. f, Kaplan-Meier plots
depicting OS difference in persons with CCRCC, HCC and LUAD stratified by the

median value of the average abundance of proteins in clique 160. The number

of samples (n) isindicated on each plot. Log-rank Pvalues and hazard ratios
(HRs), shown with 95% confidence intervals, were derived from Cox proportional
hazard models. g, A tumor-underexpressed, cell-adhesion-associated dense
module (clique 46). The edge coloris as described ind. h, Box plots comparing
the average protein abundance of clique 46 in tumor and normal samples
demonstrating tumor underexpression in five cancer cohorts. The number of
samples (n) isindicated in parentheses. Pvalues were determined using a two-
sided Wilcoxon rank-sum test. i, Kaplan-Meier plots depicting OS difference in
persons with HCC stratified by the median value of the average abundance of
proteinsin clique 46. The number of samples (n) is indicated in the plot.

Pvalues and HRs were obtained as described in f. *P < 0.05, **P < 0.01, **P < 0.001
and ***P < 0.0001. For box plots, the center line indicates the median, box

limits indicate the upper and lower quartiles and whiskers indicate 1.5x the
interquartile range; the number of samples per group is indicated in parentheses.
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levels of level 2 modules for each branch. The top-enriched cancer hallmark
annotations for the ten largest level 2 branches are annotated in gray text. Green
text indicates biological processes highlighted in Fig. 5.

initially seemed counterintuitive, further examination provided deeper
insight. For example, the branch rooted in L2_M12, associated with
inducing angiogenesis and activating invasion and metastasis, was
enriched in functional categories including ECM structure, cell adhe-
sionand angiogenesis, with modules deeper within the branch showing
more specialized roles (Fig. 5¢). While L2_M12 was overall underex-
pressed, it was divided into an underexpressed module (L3_M19) tied
to antitumor functions such as cell adhesion and an overexpressed
module (L3_M18) linked to protumor functions such as angiogenesis.
Both overexpressed and underexpressed modules were enriched with
ECM components but antiangiogenic ECM components were enriched

in underexpressed modules, while proangiogenic ECM components
were enriched in overexpressed modules (Supplementary Table 4).
Interestingly, underexpressed dense modules related to cell adhe-
sion (cliques 17 and 46) were entirely covered by L3_M19, whereas the
overexpressed dense modules related to ECM (cliques 54,96 and 160)
were found entirely within L3_M18. Consistent with the good-prognosis
association observed for clique 46 (Fig. 3i), higher expression of L3_
M19 was correlated with a longer OS in HCC (Fig. 5d), with a similar
trend observed for LUAD and CCRCC (Supplementary Table 4). In
contrast, higher expression of the tumor-overexpressed module L4 _
M13, which was under L3_M18 and included most components from
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Fig. 5| In-depth analysis of selected FunMap branches and their clinical
associations. a, Hierarchical organization of five modules related to protein
folding and protein transport. The node color and size of the modules are the
same as in Fig. 4. Pvalues were determined using a hypergeometric test.

b, Kaplan-Meier plots depicting OS difference in persons with CCRCC stratified
by the median value of the average abundance of proteins in module L4_M58.
The number of samples (n) is indicated in the plot. Log-rank Pvalues and HRs,
shown with 95% confidence intervals, were derived from Cox proportional
hazard models. ¢, Hierarchical organization of modules in an angiogenesis and
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metastasis associated branch. The node color and size are the same asina. The
node outline indicates the enrichment of ECM genes with proangiogenic versus
antiangiogenicroles. Pvalues were determined using a hypergeometric test.
Blood vessel dev., blood vessel development. d,e, Kaplan-Meier plots depicting
OS difference in persons with HCC stratified by the median value of the average
abundance of proteins in module L3_M19 (d) or in persons with HCC and HNSCC
stratified by L4_M13 abundance (e). The number of samples (n) is indicated in the
plots. Pvalues were derived as described in b.

the poor-prognosis cliques 54,96 and 160 (Fig. 3f and Extended Data
Fig. 3f,g), was correlated with a shorter OS in HCC (Fig. 5e) and other
cancer types (Supplementary Table 4). Thus, the hierarchical module
analysis not only reinforced the clique-based analysis results but also
revealed the broader functional context and systematic organization
of the dense modules.

In summary, network analysis revealed a hierarchical modular
organization of FunMap, inwhich the major branches were statistically
aligned to cancer hallmarks, supported by both functional analysis and
the examination of clinical outcomes.

Connecting somatic mutations to protein modules
A major goal of cancer proteogenomics is to understand how somatic
mutations impact the cancer proteome. Previous studies used uni-
variate analysis to examine the cis and trans effects of individual
mutations®**°, Here, we used a machine learning approach to simul-
taneously model the impact of all significant mutations on individual
functional modules in FunMap to better capture the complexity of
biological systems (Methods).

Weidentified 77 genes that were significantly mutated (g value < 0.1)
inatleastone of theten CPTAC cancer types. For each of the 536 modules
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Fig. 6 | Connecting somatic mutations to functional protein modules.
a, Heat map depicting the most important mutant genes in predicting the
proteinabundance of 32 modules. The modules were clustered on the basis
of membership similarity. The heat map color corresponds to the relative

importance in the XGBoost model. b, Associations defining module L2_M40.
The node size corresponds to the node degree. ¢, Box plot comparing L2 M40
protein abundance in samples with and without KEAPI mutations in selected

cancer cohorts. The number of samples (n) is indicated in parentheses. P

values were derived from a two-sided Wilcoxon rank-sum test. d, Associations

defining module L3_MS58. The node size corresponds to the node degree. e,
Box plot comparing L3_M58 protein abundance in samples with and without
TP53 mutations across cancer cohorts. The number of samples (n) is indicated
in parentheses. Pvalues were derived from a two-sided Wilcoxon rank-sum
test. f, Clique 254, a CT antigen-associated dense module. *P < 0.05, **P < 0.01,

***P < 0.001and ***P < 0.0001; NS, not significant. For box plots, the center

lineindicates the median, box limits indicate the upper and lower quartiles and
whiskersindicate 1.5x the interquartile range; the number of samples per group is

indicated in parentheses.

Nature Cancer


http://www.nature.com/natcancer

Analysis

https://doi.org/10.1038/s43018-024-00869-z

identified by NetSAM or ICE, we trained an XGBoost model to predict the
average standardized protein abundance on the basis of the mutation
status of the 77 genes. In afivefold cross-validation based on data from
1,021 tumorsacross ten cancer types, 32 modules showed anonrandom
correlation (PCC>0.2,P<0.00001) between predicted and actual abun-
dance, suggesting a significant connection between mutation status
and protein abundance of these modules. Featureimportance analysis
highlighted TP53asatop predictor across all32 modules, consistent with
its role as a master regulator, while some other genes were specific to
certainmodules (Fig. 6aand Supplementary Table 5).

Hierarchical clustering of the 32 modules based on pairwise
membership overlap revealed a predominant cluster with19 modules
(highlighted by redlinesin the dendrogramin Fig. 6a). These modules
comprised genesinvolvedinthe cellcycle or cellular division processes
(Supplementary Tables 3 and 4). The most distinctive mutant genes
defining this cluster included RBI, ACVR2A, SETDIB and TBCID23.
Mutations or deletions of RBI are common across various cancers and
disrupt cell-cycle control, leading to uncontrolled cell proliferation®.
While the roles of ACVR2A, SETD1B and TBCID23 are less extensively
documented, mutations in these genes have been implicated in cell
proliferation and tumorigenesis®>*.

Another cluster of three modules were dominated by KEAPI muta-
tions (highlighted by pink lines in the dendrogram in Fig. 6a), with
L2_M40, a module comprising 22 genes (Fig. 6b), showing a particu-
larly strong effect. L2_M40 exhibited increased protein abundance
in tumors with KEAPI mutations across all cancer types that had a
sufficient number of KEAPI-mutant samples for statistical comparison
(Fig. 6¢). Moreover, the expression of genes in this module showed
the highest degree of coregulation at both mRNA and protein levels
(average PCC > 0.5) in these four cancer types compared to the other
cancer types (Extended Data Fig. 4a). Importantly, all genes in the
module are known targets of nuclear factor erythroid 2-related factor
2 (NRF2)****, whichis activated by loss-of-function mutations in KEAPI,
thegene encoding aninhibitor of NRF2. Therefore, this example serves
asastrong positive control for our prediction.

Despite its broad importance, TP53 mutations showed the strong-
estimportance for modules C253 and L3_M58 (Fig. 6a). Module L3_M58,
comprising 51 genes including highly interconnected constitutive
photomorphogenesis 9 (COP9) signalosome subunits (Fig. 6d), showed
decreased protein abundance in TP53-mutant tumors across nine of
the ten cancer types, with a statistically significant decrease in five
(Fig. 6e). Notably, gene expression in this module was more coregu-
lated at the protein level than at the RNA level in most of the cancer
types (Extended Data Fig. 4b). The COP9 signalosome is known to
promote p53 degradation by targeting it for ubiquitination*’. Our data
suggest a negative feedback loop in which wild-type p53 activates the
signalosome to suppress p53 levels and the process is disrupted by
TP53 mutations, leading to increased mutant p53 accumulation. This
is consistent with the elevated p53 levels observed in TP53-mutant
tumors (Extended Data Fig. 4c).

Some modules, such as C254, lacked a dominant predictor
(Fig. 6a). Thismodule, comprising four melanoma antigen gene family
cancer/testis (CT) antigens and a testis-specific protein DCAF4L2 (ref.
43) (Fig. 6f), showed no significant associations with any top-ranked
mutant genes in univariate analysis. However, several top predictors,
such as PBRM1, ATRX, TP53 and KDMS5C, have been linked to immuno-
suppressionand immunotherapy response***¢, aligning with the role
of C/T antigens in triggering immune responses.

Insummary, our machine learning approach effectively connected
somatic mutations with protein abundance across various functional
modules. While some modules had clear dominant predictors and
others did not, our models consistently identified key mutant genes
whose functions aligned with the overarching function of the modules,
demonstrating a clear functional basis for our predictions.

Illuminating understudied cancer proteins

Despite the massive disparity in our knowledge of individual genes
(ranging from 9,282 publicationsin the Gene Reference Into Function
(GeneRIF) database for TP53to zero publications for 700 ‘dark’ genes),
proteindegreesin FunMap (thatis, the number of edges) were compa-
rable across the entire spectrum of knowledge depth (Fig. 7a), offering
agreat opportunity to illuminate understudied genes. Notably, while
known cancer driver genes were concentrated among well-studied
genes, proteins differentially expressed between tumor and normal
samples, according to ameta-analysis of five cancer types, were evenly
distributed across the proteome, including the 700 dark genes with
no publications (Fig. 7a and Supplementary Table 6). Specifically,
125 of these dark genes were highly significantly overexpressed in
tumors, whereas 92 were highly significantly underexpressed (meta
Pvalue <1.0 x107; Fig. 7b).

To gain functional insights into the 700 dark genes, we used the
network topology analysis algorithm in WebGestalt*’ to establish
aneighborhood of 50 genes for each dark gene and performed GO
enrichment analysis (Methods). We found significant enrichment in
biological processes for 76.2% of the genes, in molecular functions
for 74.5% of the genes and in cellular components for 65.5% of the
genes (FDR < 0.05, Fisher’s exact test followed by Benjamini-Hoch-
bergadjustment; Fig. 7c). This analysis connected 496 of the 700 dark
genes, including the 200 showninFig.7b, to atleast one GO annotation.
Although these genes lack publication records in GeneRIF, 315 have
existing GO annotations. Of these, 183 (58%) had their top ten predicted
GO terms overlap with one or more existing annotations. This high
overlap, compared to just 0.63 from random gene sets, represents a
290-fold increase, underscoring the effectiveness of our approachin
predicting gene function.

The dark genes RBM34 and RBM12B were among the most signifi-
cantly overexpressed genes in tumors (meta P< 1.0 x 10™°°; Fig. 7b and
Extended Data Fig. 5a), consistent with their frequent somatic ampli-
fication across various cancers (Extended Data Fig. 5b). Both genes
encode RNA-binding motif (RBM) proteins, although their functions

Fig.7 | FunMap predicts functions of understudied proteins. a, Heat map
ofthe adjacency matrix of FunMap with genes sorted on the basis of GeneRIF
counts. Genes with a GeneRIF count of 0 are defined as dark genes. The edge
countdepicts the log, count of the number of edges per gene. The cancer driver
annotation indicates whether agene is annotated as a cancer gene in the CGC
database. Tumor versus normal annotation plots of the signed —log,, meta P
value comparing protein abundance in tumor versus normal across cancer
cohorts. A positive sign indicates higher abundance in tumor and a negative sign
indicates lower abundance in tumor compared to normal. b, Heat map depicting
the signed —log;, meta Pvalues (P < 1.0 x 10¢) computed as described ina. The
yellow text indicates the genes analyzed in subsequent panels. ¢, Proportions
ofthe dark genes with significantly enriched GO terms in enrichment analysis
ofthe network neighborhood. Pvalues were derived from a hypergeometric
test and FDR-adjusted Pvalues were derived using the Benjiamini-Hochberg

method. d, Network neighborhood of CXorf38 with genes associated with the
enriched GO terms highlighted. e,f, Relationship between protein abundance of
CXorf38and RNAseq-inferred ESTIMATE ImmunoScore in HNSCC (e) and LSCC
(f) tumors. The number of samples (n) is indicated in the plots. Pvalues were
derived from two-sided Spearman’s rank correlation. The shaded area depicts
the 95% confidence interval. g, Network neighborhood of MAB21L4 with genes
associated with the enriched GO term highlighted. h,i, Protein abundance (log,
MSlintensity) of MAB21L4 by histological tumor grade in HNSCC (h) and LUAD
(i) tumors. The number of samples (n) isindicated in parentheses. Pvalues were
derived from atwo-sided Jonckheere-Terpstra test. For box plots, the center
lineindicates the median, box limits indicate the upper and lower quartiles and
whiskersindicate 1.5x the interquartile range; the number of samples per group is
indicated in parentheses.
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have not been experimentally characterized. The network neighbor-
hood of RBM34 was enriched for genesinvolved in ribosomal RNA pro-
cessing (Extended DataFig. 5¢), whereas that of RBM12B was enriched
for genes associated with RNA splicing (Extended Data Fig. 5d). This
analysis connected their amplification and overexpression to distinct
functional roles, supported by computational inference from the GO
consortium on the basis of an orthogonal phylogenetic approach®.

The dark gene CXorf38was significantly overexpressed in tumors
compared to normal samples in four of the five cancer types (meta
P=8.6 x107%; Extended Data Fig. 6a). Its network neighborhood was
enriched for genes associated with the cytokine-mediated signal-
ing pathway, major histocompatibility complex protein binding and
proteasome complex (Fig. 7d), suggesting an immune function. As
supporting evidence, CXorf38 protein levels correlated significantly
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with theimmune infiltration scores computed on the basis of RNAseq
datainmost CPTAC cancer types (Fig. 7e,f and Extended Data Fig. 6b).
Moreover, single-cell data from the Human Protein Atlas show that
CXorf38is highly expressed inimmune cells (Extended Data Fig. 6c),
reinforcingitsinferred immunerole.

The dark gene MAB21L4 was significantly underexpressed in
tumors in three cancer types (meta P=9.9 x 107¢) (Extended Data
Fig. 6d). Its network neighborhood was enriched for genes associated
with epithelial cell differentiation (Fig. 7g), the suppression of which
has a critical role in tumorigenesis. Remarkably, MAB21L4 protein
abundance was lower in poorly differentiated tumors (G3) compared
to well differentiated (G1) and moderately differentiated (G2) tumors
inboth HNSCC and LUAD (Fig. 7h,i). These findings, consistent with a
recent study showing that loss of MAB21L4 blocks differentiation to
drive the development of squamous cell carcinoma®, provide strong
evidence to support atumor suppressor role of MAB21L4.

Together, our systematic evaluation using existing GO annota-
tion and the specific examples illustrate the utility of FunMap as a
systematic framework to illuminate understudied genes, including
many understudied cancer-associated proteins.

Discovery of drivers with low mutation frequency
Leveragingadvancementsingraph neural network (GNN)-based deep
learning, we developed a positive-unlabeled (PU) learning algorithm
thatintegrates the FunMap network, gene mutation significance scores
fromten CPTAC cohorts and known cancer genesto trainagraph atten-
tion network (GAT) model for classifying unlabeled genes as cancer or
noncancer genes (Extended Data Fig. 7 and Methods).

For performance evaluation, we used 274 cancer genes from the
original Cancer Gene Census (CGC)** as the positive set and 449 genes
added later as hidden positives (Supplementary Table 7). The FunMap
GAT model outperformed a random forest classifier trained without
using network data, with a 6.5% improvementinareaunder the receiver
operating characteristic (AUROC), 27.8% improvement in area under
the precision-recall curve (AUPRC) and 35.7% improvement in the aver-
age precision at k (AP@k) (Methods). We also trained alternative GAT
models using other networks including BioGrid*, BioPlex'®, HI-union"
and STRING?. The FunMap GAT model outperformed all alternative
models for all three evaluation metrics (Fig. 8a).

Among the top FunMap GAT predictions, 60.0% of the top 5,
40% of the top 10 and 25% of the top 20 were hidden positives, far
exceeding the expected 4.3% by random chance (P < 0.01, Fisher’s
exacttest). Inthis analysis, modelsincorporating network data clearly
outperformed those that did not (Fig. 8b), and there was minimal
overlap amongthe top 20 predictions when different networks were
used or when network data were not used (Supplementary Table 7).
Theseresults underscore the notableimpact of network information
on prediction outcomes.

Despite low mutation frequencies (Fig. 8c), 12 of the top 15 (80%)
putative driver genes predicted by FunMap and not covered by CGC had
at least one publication that supports a causal role in cancer through
geneticand/or pharmacologic perturbationin model systems (Fig. 8d,
Supplementary Table 7 and Methods). Moreover, nine genes showed
frequent copy number alterations in TCGA data (Fig. 8e), providing
independent support for our predictions because copy number data
were not used in the FunMap GAT model. Notably, LG/3, although lack-
ing causal evidence in the literature (Fig. 8d), was recurrently deleted
in 3% of the 5,656 TCGA samples and significantly downregulated at
both RNA and protein levels in tumors from CPTAC cancer cohorts
where LGI3 was quantified inboth tumor and normal samples (Fig. 8f).
Furthermore, an analysis of clustered regularly interspaced short palin-
dromicrepeats (CRISPR) knockout (KO) dependency scores for cancer
cell lines available through DepMap revealed a significant increase
in cell fitness across various lineages following LGI3 KO (P < 0.05,
one-sample t-test) and the effect was on par with that observed for

well-known tumor suppressor genes listed in the CGC such as FAT1
(ref. 53) (Fig. 8g). These results collectively suggest LG/3 as a putative
tumor suppressor gene.

Taken together, our data highlight the effectiveness of FunMap
inuncovering genes with alow mutation frequency as putative cancer
genes, presenting them as promising candidates for further experi-
mental validation.

Discussion

Large-scale omics profiling has massively expanded the landscape of
somatic mutations and cancer-associated proteins but the difficulty
in functional interpretation hinders their prioritization and transla-
tion into clinical practice. By using machine learning techniques on
pan-cancer proteogenomics data, FunMap provides a systematic
framework to tackle this challenge.

With 196,800 associations among 10,525 proteins and an LR of
50, FunMap provides both a comprehensive and unbiased proteomic
coverage and a high level of functional relevance. The key differences
between our approach and previous studies on gene coexpression
networksinclude the use of protein profiling data obtained from over
1,000 human tumor samples spanning 11 cancer types and asupervised
machine learning approach for functional network construction. Con-
sistent with previous reports, protein coexpression is a much more
reliable predictor of gene cofunctionality than mRNA coexpression'®'?;
however, combining both protein and mRNA coexpression provides the
highest level of predictive power. One unexpected observationis that
our coexpression-based functional network outperforms protein-pro-
tein interaction networks in discriminating between functionally rel-
evantandirrelevant gene pairs. Thus, functional networks constructed
from proteomic and proteogenomic data offer a complementary
approachto protein-proteininteraction networks, thereby expanding
systems biology frameworks for functional genomicsresearch. Indeed,
analyses from our study clearly demonstrate the utilities of FunMapin
providing a functional annotation of understudied cancer proteins,
obtaining functional insights into somatic mutations and shedding
globalinsights into cancer proteome organization and function.

A limitation of this study is that data from only 11 cancer types
wereincludedinthe pan-cancer FunMap construction. We expect that
proteomic and proteogenomic profiling will be applied to more cancer
types in the future and a more comprehensive analysis can be per-
formed as more cancer types areincluded in future studies. Moreover,
the CPTAC cohorts used in the study have limited follow-up duration,
with theincidence of death events varying substantially among differ-
entcancer types. Therefore, the statistical power to detect associations
with survivalis generally low and varies considerably across cohorts,
which constrains the scope of our prognostic analysis. To mitigate
this limitation, it would be beneficial to seek out cancer cohorts that
havebeen followed for alonger period. For some cancer typessuch as
breast cancer and lung cancer, there are already multiple independent
proteomic and proteogenomic studies. Inthis scenario, our approach
canalsobe usedtointegrateindependent datasets fromasingle cancer
type to build cancer-type-specific FunMaps. Additionally, this study
focused on assessing the value of proteogenomic profiling data in
mapping the functional network of human cancer but the approach
can be easily expanded to integrate expression data with other types
of data, such as protein—-protein interaction data, to generate a more
comprehensive functional network. Although FunMap GAT outper-
formed other models to some extentindistinguishing between driver
and passenger mutations, the accuracy was far from satisfactory for
all models, highlighting the difficulty of this persistent challenge.
Furtherimprovements may be made inboth FunMap construction and
network-based driver gene prediction. Lastly, the associations identi-
fied in our analysis represent pairs of genes that work in coordination
withinthe complex tumor tissue system, which includes not only cancer
cellsbutalso the surrounding microenvironment. Because the datawe
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used originated frombulk tissues, itisimpossible to determine associa-
tions within specific cell types. The emerging single-cell proteomics
technology would be ideal for addressing this limitation®*.

In conclusion, this study highlights the great potential of integrat-
ing machine learning and proteogenomic profiling to gain a deeper
understanding of complex cancer systems. By generating a compre-
hensive functional network, this approach provides arobust framework
for cancer functional genomics research, offering valuable insights
into somatic mutations and cancer-associated proteins. These findings
cangreatly aidin prioritizing targets for clinical translation, ultimately
contributing to the development of more effective cancer therapies.

Methods

Data acquisition

CPTAC data for ten cancer cohorts were harmonized by the CPTAC
pan-cancer working group as previously described”. HCC data were
downloaded from the original publication®. In total, we collected
mRNA and proteomics data for 11 cancer cohorts, where five cohorts
also included data for matched normal samples for both mRNA and
protein. For each of the 32 mRNA or proteomics datasets, we required
thateachgene or proteinhad atleast 20 valid data points to beincluded
inthe analysis. The union set of all valid genes was denoted as g ,jig-

Network construction

Amachinelearning model using XGBoost*® was trained to predict the
probability of cofunctionality for a gene pair. For each gene pair (4, B),
the PCC PCC 4z was computed between their mRNA expression vectors
or protein expression vectors in each of the 32 datasets. We further
calculated the MR of a gene pair in each dataset using a modified ver-
sion of a previously published definition”, MR(4, B) = ﬁm where
rygistherank of PCC,zamongall PCCs between gene A and its partners.
The rank starts at 0 and a larger PCC results in higher ranks. The total
number of genesis denoted as n. The MR values are in the range of [0,1].
Inthe case of PCC,z missingin a cohort, we treat r,z as amissing value.
The 32 MRs for agene pair were used as input features for training the
XGBoost model.

To prepare the datafor training and validating the XGBoost model,
we downloaded a gold-standard set that was previously constructed
using the Reactome pathway database'. In brief, functionally associ-
ated protein pairs (Iabeled as positive) are defined as pairs that are
found in the same detailed pathway. Here, each protein is annotated
to a subset of the lowest-level pathways. Only pathways that contain
<200 proteins were included to make sure that only closely related
protein pairs were positively labeled. Protein pairs thatare notincluded
in the same pathway at any annotation level are labeled negative. We
included only those pairs where both proteins are in g,,;s as the final
dataset D for training the classification model. We partitioned the data
into training (Dy,i,) and test (D) sets, with a 50-50 split. The ratio of
positive and negative labels was kept the same in the training and test
sets using a stratified splitting technique. However, it is worth noting
that the original dataset exhibited a substantial class imbalanceissue,
with a considerably larger number of instances in the negative class
compared to the positive class. To tackle this challenge, we applied
undersampling specifically to the negative class within the training
dataset. This step involved reducing the number of negative class
instances, aligning them with the number of positive class instances.
The goal was to create a balanced training dataset that allowed the
machinelearning model tolearnfrom both classes more equitably. We
then performed hyperparameter tuning by applying grid search with
fivefold cross-validation. The parameter grid was defined as follows:
{'n_estimators’:[50,150, 250], ‘max_features’:[0.2,0.4,0.6,0.8], ‘min_
samples_split’: [2, 4, 6]}. We used AUROC as the performance metric
for hyperparameter tuning. After the model was trained, we predicted
thelabels for all possible pairs of proteinsin g,,iq. We required that the
MR of a pair must be larger than 0.95 (that is, top 5% among all gene

pairs) inatleast one data cohort. The final prediction performance was
measured with LLR using the gold-standard subset D.. Here, LLR is
defined as

LLR = |H<W>

C(P)/C(N)

where PP is the set of predicted positive protein pairs, while P and ¥
are sets of positive and negative pairsin D, respectively. Setintersec-
tion is denoted as &, while function C(.) returns the size of a set.
To determine the number of pairs to be included in the final network,
we first sorted the pairsin descending order of being positive (accord-
ing to the predicted probability). We then computed the LLRs while
designating more top pairs withastep size of 100 as PP. The LLR drops
with the inclusion of less confidently predicted pairs. We stopped the
processassoonasLLR dropped below 3.912 (LR = 50). All protein pairs
selected with this procedure were included as edges in a functional
association network named FunMap.

Detection of network modules

We used two complementary algorithms to identify modules from
FunMap. First, we applied the ICE algorithm? to identify relatively
independent maximal cliques in the network as functional modules.
Overlap between the modulesis allowed but restrained because of the
inherent design of the algorithm. The stringent requirementimposed
by the module definitionin the algorithm ensures high-level of cofunc-
tionality among all proteins in a module. The input to the software
(http://ice.zhang-lab.org) is the network edge list file and the only
required parameter is the minimal module size C. In this study, we set
Cto5.

Incontrast to thebottom-up approach takeninICE, the top-down
hierarchical modular organization of FunMap was uncovered using
the NetSAM algorithm* implementedin R (https://bioconductor.org/
packages/release/bioc/html/NetSAM.html). The main function of the
package takes as input an network edge list file and outputs an ‘nsm’
file that describes all detected modules organized in a hierarchical
fashion. The mostimportant parameters to the functioninclude ‘min-
Module’ and ‘modularityThr’. The parameter ‘minModule’ specifies the
ratio between the size of the smallest module and the total number of
nodesinthe network. If the size of amodule identified by the function
is less than the minimum size, the module is not further partitioned
into submodules. We set ‘minModule’ such that the minimum size of
amodule was 20. To test whether a network under consideration had
anonrandom internal modular organization, we set the parameter
‘modularityThr’ to 0.2 such that the network would be considered to
have internal organization and would be further partitioned when its
modularity” was above this threshold value. This parameter reflects the
stringency of splitting amodule into submodules. A higher threshold
value tends to split the modules less frequently.

Connecting hierarchical modules to cancer hallmarks

Overlap between FunMap’s hierarchically organized modules and
cancer hallmarks was evaluated according to 146 literature-curated
GO terms®*°%%° These terms are categorized into ten themes that
map to ten cancer hallmarks®'. For each FunMap module, we performed
overrepresentation analysis (ORA) and obtained the top tenenriched
terms for that module. To annotate each branch of the tree structure
rooted on a second-level module with the most relevant hallmark, we
designed a voting scheme that works as follows: for each branch, we
first designated the most overlapped hallmark as that with the largest
sum of associated negative logarithm of P values for that hallmark
overallmodulesinthatbranch.Inessence, each module canvotefora
representative hallmark for its residing branch usingits level of overlap
with that hallmark. The designated hallmark for eachbranch represents
the consensus annotation for the whole branch. The top associated
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consensus annotation for the tenlargest branches are shownin Fig. 4.
For selected branches, a second consensus hallmark annotation was
alsoshownthat was both closely related to the top annotation and had
asufficiently significant Pvalue.

Connecting hierarchical modules to ECM and angiogenesis
ECM genes encoding proteins with documented exclusive proangio-
genicor antiangiogenicactivity® along with collagen type VI were first
used to calculate the proportion of proangiogenic and antiangiogenic
genes within nodes downstream of the FunMap branchrooted in hier-
archical module L2_M12. A final enrichment ratio for angiogenic impact
was then computed by taking the previous proangiogenic ratio over
the antiangiogenic ratio. Values > 1 indicate a higher proportion of
proangiogenic ECM genesinamodule while values <1indicate a higher
proportion of antiangiogenic ECM genes. Some modules did not con-
tain any antiangiogenic genes and were annotated as proangiogenic
exclusive (Supplementary Table 4).

Connecting network modules to somatic mutations

We trained an XGBoost model to evaluate the importance of gene muta-
tionin predicting network module abundance. A total of 536 modules
were considered, including those revealed by NetSAM (255) and ICE
(281). To compute module abundance, we first transformed the raw
protein expression data in each cohort into z scores by performing
feature-wise standardization. The module abundance of a sample is
defined asthe average zscore of allgenes in the module for that sample.

We used mutation datafromten CPTAC tumor cohortsin this part
ofthe study because of the lack of mutation data from the HCC study.
First, we selected genes that were significantly mutated in atleast one
cohort (g value < 0.1). We then retrieved the actual binary mutation
data of the selected genes from each cohort and merged them into a
final feature dataset. The resulting mutation dataset was composed of
1,021 samples and 77 genes.

For eachmodule, we trained a regressor with XGBoost to predict
module abundance based on the 77 significantly mutated genes. We
applied fivefold cross-validation for hyperparameter tuning using
the grid search technique. The parameter grid was defined as {learn-
ing_rate’:[0.1,0.2, 0.3, 0.4, 0.5], ‘n_estimators’: [20, 50], ‘max_depth”:
[2,3,4]}. We used the PCC between the predicted and actual abundance
scores as the scoring metric for model assessment. Best parameters
were used to fit a final model with the whole training data. We only
included those modules that could be predicted with PCC > 0.25in
downstream analyses. This resulted inatotal of 17 modules. The built-in
featureimportance scores of the trained model were used to estimate
the contribution of each mutated genein predicting the module abun-
dance. Specifically, we used the ‘gain’ typeimportance, whichimplies
the relative contribution of the corresponding feature to the model,
calculated by taking each feature’s contribution for each tree in the
model. A higher value of this metric when compared to another feature
implies that itis more important for generating a prediction. This allows
features tobe ranked and compared with each other.

Function prediction of understudied genes

On the basis of the assumption that genes with similar functions are
located in proximity to each other in the functional association net-
work, we made function prediction of the dark genes in FunMap. We
used the network topology analysis algorithm in WebGestalt* to estab-
lishaneighborhood of 50 genes for each dark gene and then performed
GO enrichment analysis. Specifically, the algorithm lets the random
walker start fromeach dark gene. It repeatedly moves toits neighboring
nodes with anequallikelihood. At eachstep, it also has some probability
(P=0.5) of returning to the starting point. The restart probability con-
trols how far the random walker moves away from the dark gene. The
final score of ageneis defined as the steady-state probability that the
walker will stay at the genein the long run. For each dark gene, we chose

the top 50 genes with the highest scores as its network neighbors and
then performed ORA against GO terms for these network neighbors.

Cancer driver gene prediction

To predict cancer driver genes, we trained GAT-based® neural net-
work models on FunMap and compared the performance with models
trained with other publicly available networks, including BioPlex'®,
HI-union', BioGrid*® and STRING?. For the STRING network, we only
keptinteractions withacombined score higher than 700. As abaseline,
wealso trained arandom forest classifier without using network data.

We used mutation data from the ten CPTAC tumor cohorts in
this part of the study. First, we selected genes that were significantly
mutatedinatleast one cohort (g value < 0.1). We then performed -log;,
transformation to the raw Pvalues. Each gene was characterized by a
ten-dimensional vector as its features, representing mutation signifi-
cancein ten cancer cohorts.

Given the uncertainty regarding the role of an unlabeled gene as
adriver ornondriver gene, the standard supervised machine learning
approachisnotwell suited for our task. Thisis because of the fact that
typical supervised learning algorithms necessitate the presence of
both positive and negative examples for training purposes. Therefore,
we formulated our prediction task as a PU learning problem® where
genes in the network are divided into positive genes (known drivers)
and unlabeled genes, which can contain both hidden driver genes (to
be predicted positives) and nondriver genes (negatives). The goal is
to train a model that uses known drivers to identify hidden drivers in
the network. For known drivers, we downloaded a list of cancer driv-
ers from the original CGC publication®, whichincluded 274 genes. To
testour trained model, we downloaded the 449 driver genes that were
included in the CGC database after the original publication (Supple-
mentary Table 7). Only known and hidden driver genes presented in the
respective networks were used intraining and performance evaluation.

We used the bagging based PU learning approach® to tackle the
driver gene prediction task. The approach can be broken down into
four steps: (1) create atraining set by combining all positive data points
with arandom bootstrapped sample set B of the same size from the
unlabeled samples; (2) train a classifier with the newly assembled
sample set, treating positive and unlabeled data points as positives
and negatives, respectively; (3) apply the classifier to those unlabeled
samplesthat werenotincludedin B, the out-of-bag (OOB) sample set,
and record their predicted scores; and (4) repeat the previous three
steps T times (T = 10in this study) and assignto eachsample the average
ofthe OOB scoresiit has received.

To train a node classifier in step 2 using GNN, we used the GAT
architecture. The learning of a GAT attention layer involves four key
steps. First, to obtain sufficient expressive power, alinear transforma-
tion is applied to the feature vectors of the nodes. Second, attention
coefficients determining the relative importance of neighboring fea-
tures to each other are computed. To obtain the attention score
between two neighbors, it first concatenates the embeddings z of the
twonodes obtained from the previous step, and then takes a dot prod-
uct of it with a learnable weight vector a and finally applies a leaky
rectified linear unit (LeakyReLU). This step can be formulated as

e; = LeakyReLU(a’(z/llz ;))

where || denotes concatenation. Third, to make the scores easily com-
parable, the attention coefficients are normalized across all neighbor-
hoods using the softmax function. The fourth and final step works
similarly to a graph convolutional network. The embeddings from
neighbors are aggregated together, weighted by the attention coeffi-
cientsand then transformed by a nonlinear activation function. Similar
tomultiple channelsinaconvolutional neural network, GAT uses mul-
tihead attention to enhance the model capacity and to stabilize the
learning process. Specifically, K independent attention mechanisms
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apply the transformations of steps 1-3. During the last step, embed-
dings from different heads are averaged before applying the nonlinear
transformation. Inthis study, we trained amodel consisting of two GAT
layers each with eight attention heads.

For performance evaluation, in addition to the standard metrics
suchas AUROC and AUPRC that treat all unlabeled samples as negative,
we also included the more appropriate AP@k metric, which is widely
usedintheareas ofinformationretrieval and recommendation systems.
Essentially we treated our task as aranking problem where we aimed to
assign the test positive samples with higher scores (likelihood of being
adriver gene) such that theyranked higherinthelist of sorted prediction
scores®. After the samples were sorted by their predicted scores, AP@k
was computed as AP@k = ——— ¥ @ where mis the total number

min(mk) <=1

of positive samples in the test dataset. TP(i)is set to O if the ith sample
isnotapositive test sample. Otherwise, itis set to the number of positive
test samples seen up to the ith position in the ranked list. AP@k is a
measure that combines recall and precision for ranked results. It is
considered areasonable evaluation metric for emphasizing thereturn
of more highly likely positive samples at the top of the ranked list®.
We trained our GAT models using the Pytorch Geometric frame-
work®®. Theinputs to the modelincluded a feature matrix X € R¥and
network edge list (Extended Data Fig. 7). In this study, p was set to 10,
representing the significance of gene mutationin ten cancer cohorts.
Cross-entropy loss was computed as L = —(ylog(h) + (1 —y)log — h)),
where his the output of the network after sigmoidal activation and y
is the node label (0 or 1). The ADAM optimizer®® was used for training
with an exponentially decaying learning rate (y = 0.99) starting at
0.001. Weapplied early stopping to prevent overfitting. For the baseline
random forest model, only the feature matrix was needed. Default
parameters provided in the scikit-learn package’ were used.

Published causal evidence supporting predicted cancer drivers
Each of the predicted cancer drivers described above was used to
search PubMed with the following terms on December 20,2023: ‘gene
(CRISPR OR KO OR shRNA OR siRNA knockdown OR silencing OR
overexpression OR over-expression) cancer’, where ‘gene’ wasreplaced
by the predicted cancer driver. Search results were sorted in descend-
ing order with respect to published date. Abstracts or manuscript
texts were then manually vetted for causal evidence that genetic
and/or pharmacologic perturbation of the predicted cancer driver
functionally impacted cancer phenotypes (proliferation, migration,
invasion, etc.) or augmented drug responses in model systems. This
continued for each gene until all search records were verified or until
ten publications by recent publication date were found with causal
evidence impacting cancer phenotypes and/or drug response (Sup-
plementary Table 7).

Genetic dependency in cancer cell lines

Cancer celllineannotations (sample_info.csv) and gene effect depend-
ency scores derived from the integration of CRISPR KO screens pub-
lished by Broad’s Achilles and Sanger’s SCORE projects wereretrieved
from DepMap Public 22Q2 (CRISPR_gene_effect_.csv)”’2. Cancer cell
lines were matched to tumor cancer types by using the following fil-
ters: BRCA: primary_disease = ‘breast cancer’ and lineage = ‘breast’;
GBM: primary_disease = ‘brain cancer’ and lineage = ‘central_nerv-
ous_system’; LUAD: primary_disease = ‘lung cancer’, lineage = ‘lung’and
lineage_sub_subtype = ‘NSCLC_adenocarcinoma’; PDAC: primary_dis-
ease = ‘pancreatic cancer’and lineage = ‘pancreas’. For each cancer cell
lineage, a one-sample, one-tailed t-test was used to identify LG/3 and
FATI associated with significantly higher cell growth following gene KO.

Statistics and reproducibility
All data used for machine learning and gene dependency analysis are
from publicly available resources>”"”> with detailed methodologies

for data collection, blinding, randomization and protection. Sample
sizes were from the original publications and they were sufficient for all
statistical tests performed. Nonparametric statistical tests were used
whenever possible. For parametric tests, normality of data distribu-
tions was assumed, although this was not formally tested. No data were
excluded from analyses. The experiments were not randomized. The
investigators were not blinded to allocation during experiments and
outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Proteomics and RNAseq data for the ten CPTAC cancer types were
derived from the CPTAC pan-cancer study” (https://proteomic.data-
commons.cancer.gov/pdc/cptac-pancancer). Proteomics and RNAseq
data for HCC were downloaded from the original publication®. The
data tables derived from these resources and used as input for Fun-
Map constructionare available from Zenodo (https://doi.org/10.5281/
zenodo.7948943)", Derived feature data for XGBoost model training
areavailable from Zenodo (https://doi.org/10.5281/zenod0.7949374)™,
XGBoost prediction scores for all gene pairs are available from Zenodo
(https://doi.org/10.5281/zenod0.10080763)”. The FunMap edge list,
dense modules and hierarchical modules are available online (https://
funmap.linkedomics.org/). The same website also provides visualiza-
tiontoolsto explore the gene neighborhoods, dense modules and hier-
archical organization of FunMap. Additionally, the FunMap network
and modules were integrated into WebGestalt”™ for enrichment analy-
sis of user-provided gene lists. Cell line annotations and CRISPR KO
dependency scores canberetrieved from the DepMap website (https://
www.depmap.org). Other datasets used in the study included the gene
cofunctionality gold standard derived from the Reactome pathway
database', ProHD", BioPlex'®, HuRI”, HI-Union" and BioGRID?. Source
data are provided with this paper.

Code availability

The FunMap Python package is fully open source and available for
download from the Python Package Index (https://pypi.org/project/
funmap). The source code is hosted on GitHub (https://github.com/
bzhanglab/funmap). Other supporting software is available as follows:
scikit-learn1.3.2 (https://scikit-learn.org/stable/index.html), ICE1.0.2
(http://ice.zhang-lab.org), NetSAM 1.44.0 (https://www.bioconduc-
tor.org/packages/release/bioc/html/NetSAM.html), WebGestaltR
0.4.6 (https://cran.r-project.org/web/packages/WebGestaltR/index.
html) and pytorch_geometric 1.7.2 (https://github.com/pyg-team/
pytorch_geometric).
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Extended Data Fig. 1| Quantification of inter-sample heterogeneity through
gene-wise standard deviation. A) Distributions of gene-wise standard
deviations across individual datasets (n =17,733 t0 19,113 mRNAs and n = 7,961

to 11,815 proteins). For boxplots, centerline indicates the median, box limits

indicate upper and lower quartiles, whiskers indicate the 1.5 interquartile range.
B) Median values of the median standard deviations across various dataset
groups. T: Tumor; N: Normal.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3| Characterization of dense modules. A) Heatmap
depictinglog2 fold change (log2FC) of average protein abundance of dense
modules (cliques) in tumor vs normal for each of the five cancer cohorts shown.
All 78 cliques have concordant tumor over- or under-expressionin all five cohorts
(FDR < 0.01in each cohort). Table shows the number and maximum number of
overlapping edges with other networks as indicated. Gene ontology biological
processes (GO_BP) indicates the top enriched term of agiven clique (GO_BP_
FDR). B-C) Tumor overexpressed, ECM-associated dense modules, Clique 96

(B) and Clique 54 (C). Edge color indicates lack of overlap in BioGRID, BioPlex,
HI-union, STRING, and CORUM (pink) or overlap in any of these resources (gray).
D-E) Boxplots comparing average protein abundance of Clique 96 (D) and Clique

54 (E) in tumor and normal samples demonstrating tumor overexpressionin

five cancer cohorts. Number of samples, n, are indicated in parenthesis. P-values
determined by two-sided Wilcoxon rank-sum test. F-G) Kaplan-Meier plots
depicting overall survival (OS) difference in patients fromindicated cohorts
stratified by median value of the average abundance of proteins in Clique 96

(F) and Clique 54 (G). Logrank p-values and hazard ratio (HR) shown with 95%
confidence intervals derived from Cox-proportional hazard models. Significance
isindicated as ****p < 0.0001. For boxplots, centerline indicates the median, box
limits indicate upper and lower quartiles, whiskers indicate the 1.5 interquartile
range, and number of samples per group indicated in parentheses.
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Extended Data Fig. 5| Illuminating understudied cancer proteins RBM34 and
RBM12B. A) Boxplots comparing protein abundance of RBM34 and RBM12Bin
tumor and normal samples demonstrating tumor over-expressionin five cancer
cohorts. Number of samples, n, are indicated in parenthesis. P-values determined
by two-sided Wilcoxon rank-sum test. For boxplots, centerlineindicates the
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interquartile range, and number of samples per group indicated in parentheses.
B) Barplots depicting frequency of somatic copy number and mutations in
RBM34 and RBM12B from TCGA PanCancer Atlas Studies in cBioPortal. C-D)
Network neighborhood of RBM34 (C) or RBM12B (D) with genes associated with
the enriched GO terms highlighted.
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Extended Data Fig. 6 | Illuminating understudied cancer proteins CXorf38
and MAB21L4. A) Boxplots comparing protein abundance of CXorf38in

tumor and normal samples demonstrating tumor over-expression in five
cancer cohorts. Number of samples, n, are indicated in parenthesis. P-values
determined by two-sided Wilcoxon rank-sum test. B) Relationship between
protein abundance of CXorf38 and RNA-seq inferred ESTIMATE ImmunoScore
ineight cancer types. P-values were derived from two-sided Spearman’s rank
correlation. Shaded area depicts the 95% confidence interval. C) Single cell data
from the Human Protein Atlas showing that CXorf38 is expressed across all cell

types, but the highest expression occurs inimmune cells. D) Boxplots comparing
protein abundance of MAB21L4 in tumor and normal samples in five cancer
cohorts. Number of samples, n, are indicated in parenthesis. P-values determined
by two-sided Wilcoxon rank-sum test. Significance is indicated as *p < 0.05,

**p < 0.01, **p < 0.001, ***p < 0.0001, ns: not significant. For boxplots, centerline
indicates the median, box limitsindicate upper and lower quartiles, whiskers
indicate the 1.5 interquartile range, and number of samples per group indicated
in parentheses.
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